login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A032085 Number of reversible strings with n beads of 2 colors. If more than 1 bead, not palindromic. 14
2, 1, 2, 6, 12, 28, 56, 120, 240, 496, 992, 2016, 4032, 8128, 16256, 32640, 65280, 130816, 261632, 523776, 1047552, 2096128, 4192256, 8386560, 16773120, 33550336, 67100672, 134209536, 268419072, 536854528 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

a(n) is also the number of induced subgraphs with odd number of edges in the path graph P(n) if n>0. - Alessandro Cosentino (cosenal(AT)gmail.com), Feb 06 2009

A common recurrence of the bisections A020522 and A006516 means a(n+4) = 6a(n+2) - 8a(n), n>1. - Yosu Yurramendi, Aug 07 2008

Also, the decimal representation of the diagonal from the origin to the corner of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 566", based on the 5-celled von Neumann neighborhood, initialized with a single black (ON) cell at stage zero. - Robert Price, Jul 05 2017

REFERENCES

S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

C. G. Bower, Transforms (2)

INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 1022

S. J. Cyvin et al., Theory of polypentagons, J. Chem. Inf. Comput. Sci., 33 (1993), 466-474.

N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015

Eric Weisstein's World of Mathematics, Elementary Cellular Automaton

S. Wolfram, A New Kind of Science

Wolfram Research, Wolfram Atlas of Simple Programs

Index entries for sequences related to cellular automata

Index to 2D 5-Neighbor Cellular Automata

Index to Elementary Cellular Automata

Index entries for linear recurrences with constant coefficients, signature (2,2,-4).

FORMULA

"BHK" (reversible, identity, unlabeled) transform of 2, 0, 0, 0...

a(n) = 2^(n-1)-2^floor((n-1)/2), n > 1. - Vladeta Jovovic, Nov 11 2001

G.f.: 2*x+x^2/((1-2*x)*(1-2*x^2)). - Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Mar 25 2004

a(n) = A005418(n+1)-A016116(n+2), n>1. - Yosu Yurramendi, Aug 07 2008

a(n+1) = A077957(n) + 2*a(n), n>1. a(n+2) = A000079(n+1) + 2*a(n), n>1. - Yosu Yurramendi, Aug 10 2008

First differences: a(n+1)-a(n) = A007179(n) = A156232(n+2)/4, n>1. - Paul Curtz, Nov 16 2009

a(n) = 2*(a(n-1) bitwiseOR a(n-2)), n>3. - Pierre Charland, Dec 12 2010

MATHEMATICA

Join[{2}, LinearRecurrence[{2, 2, -4}, {1, 2, 6}, 29]] (* Jean-Fran├žois Alcover, Oct 11 2017 *)

CROSSREFS

Cf. A005418, A016116. Essentially the same as A122746.

Row sums of triangle A034877.

Cf. A289404, A289405, A052551.

Sequence in context: A254198 A246466 A170829 * A032163 A038078 A000139

Adjacent sequences:  A032082 A032083 A032084 * A032086 A032087 A032088

KEYWORD

nonn

AUTHOR

Christian G. Bower

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 18 20:32 EST 2018. Contains 299330 sequences. (Running on oeis4.)