login
Numbers with exactly two distinct base-10 digits.
14

%I #49 Oct 12 2021 07:56:08

%S 10,12,13,14,15,16,17,18,19,20,21,23,24,25,26,27,28,29,30,31,32,34,35,

%T 36,37,38,39,40,41,42,43,45,46,47,48,49,50,51,52,53,54,56,57,58,59,60,

%U 61,62,63,64,65,67,68,69,70,71,72,73,74,75,76,78,79,80,81,82,83,84,85,86,87,89,90,91,92,93,94,95,96,97,98,100,101,110,112,113,114,115,116,117,118,119,121,122,131,133,141,144,151,155,161,166

%N Numbers with exactly two distinct base-10 digits.

%C The three-digit terms are given by A210666(1,...,244). For numbers with exactly two distinct (but unspecified) digits in other bases, see A031948-A031954. For numbers made of two *given* digits, see A007088 (digits 0 & 1), A007931 (digits 1 & 2), A032810 (digits 2 & 3), A032834 (digits 3 & 4), A256290 (digits 4 & 5), A256291 (digits 5 & 6), A256292 (digits 6 & 7), A256340 (digits 7 & 8), A256341 (digits 8 & 9), and A032804-A032816 (in other bases). - _M. F. Hasler_, Apr 04 2015

%C A235154 is a subsequence. - _Altug Alkan_, Dec 03 2015

%C A235717 is a subsequence. - _Robert Israel_, Dec 03 2015

%H Reinhard Zumkeller, <a href="/A031955/b031955.txt">Table of n, a(n) for n = 1..10000</a>

%H <a href="/index/Ar#10-automatic">Index entries for 10-automatic sequences</a>.

%F A043537(a(n)) = 2. - _Reinhard Zumkeller_, Dec 03 2009

%p M:= 5: # to get all terms < 10^M

%p sort([seq(seq(seq(seq(add(10^(m-j)*`if`(member(j,S2),d2,d1),j=1..m) ,

%p S2 = combinat:-powerset({$2..m}) minus {{}}),

%p d2 = {$0..9} minus {d1}), d1 = 1..9), m=2..M)]); # _Robert Israel_, Dec 03 2015

%t Select[Range@ 166, Length@ Union@ IntegerDigits@ # == 2 &] (* _Michael De Vlieger_, Dec 03 2015 *)

%o (Haskell)

%o a031955 n = a031955_list !! (n-1)

%o a031955_list = filter ((== 2) . a043537) [0..]

%o -- _Reinhard Zumkeller_, Feb 05 2012

%o (PARI) is_A031955(n)=#Set(digits(n))==2 \\ _M. F. Hasler_, Apr 04 2015

%o (Python)

%o def ok(n): return len(set(str(n))) == 2

%o print(list(filter(ok, range(167)))) # _Michael S. Branicky_, Oct 12 2021

%Y Different from A029742.

%Y Cf. A043638, A101594, A031948, A031949, A031950, A031951, A031952, A031953, A031954, A235154, A235717.

%K nonn,base,easy

%O 1,1

%A _Clark Kimberling_

%E Name edited by _Charles R Greathouse IV_, Feb 13 2017