login
A031769
Numbers k such that the least term in the periodic part of the continued fraction for sqrt(k) is 91.
1
8283, 33128, 74535, 132504, 207035, 298128, 405783, 530000, 670779, 828120, 1002023, 1192488, 1399515, 1623104, 1863255, 2119968, 2393243, 2683080, 2989479, 3312440, 3651963, 4008048, 4380695, 4769904, 5175675, 5598008, 6036903, 6492360
OFFSET
1,1
COMMENTS
(91*m)^2+2*m for m >= 1 is a proper subsequence. It is a subsequence (see comment in A031749) and the term 69339112 is not of this form. - Chai Wah Wu, Jun 19 2016
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
MATHEMATICA
cf91Q[n_]:=Module[{s=Sqrt[n]}, If[IntegerQ[s], 1, Min[ContinuedFraction[s][[2]]]]==91]; Select[Range[65*10^5], cf91Q] (* Harvey P. Dale, Oct 08 2016 *)
CROSSREFS
Sequence in context: A145527 A054215 A031589 * A280872 A329342 A237948
KEYWORD
nonn
STATUS
approved