login
A031736
Numbers k such that the least term in the periodic part of the continued fraction for sqrt(k) is 58.
1
842, 3366, 7572, 13460, 21030, 30282, 41216, 53832, 68130, 84110, 101772, 121116, 142142, 164850, 189240, 215312, 243066, 272502, 303620, 336420, 370902, 407066, 444912, 484440, 525650, 568542, 613116, 659372, 707310, 756930, 808232, 861216
OFFSET
1,1
COMMENTS
a(n) = 841n^2 + n for n < 61, but a(61) = 3031140. - Charles R Greathouse IV, Aug 04 2017
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
MATHEMATICA
cf58Q[n_]:=Module[{s=Sqrt[n]}, If[IntegerQ[s], 1, Min[ContinuedFraction[s][[2]]]]==58]; Select[Range[900000], cf58Q] (* Harvey P. Dale, Nov 30 2014 *)
CROSSREFS
Sequence in context: A049530 A158404 A004929 * A154473 A093242 A031527
KEYWORD
nonn
STATUS
approved