|
|
A031736
|
|
Numbers k such that the least term in the periodic part of the continued fraction for sqrt(k) is 58.
|
|
1
|
|
|
842, 3366, 7572, 13460, 21030, 30282, 41216, 53832, 68130, 84110, 101772, 121116, 142142, 164850, 189240, 215312, 243066, 272502, 303620, 336420, 370902, 407066, 444912, 484440, 525650, 568542, 613116, 659372, 707310, 756930, 808232, 861216
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
a(n) = 841n^2 + n for n < 61, but a(61) = 3031140. - Charles R Greathouse IV, Aug 04 2017
|
|
LINKS
|
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
|
|
MATHEMATICA
|
cf58Q[n_]:=Module[{s=Sqrt[n]}, If[IntegerQ[s], 1, Min[ContinuedFraction[s][[2]]]]==58]; Select[Range[900000], cf58Q] (* Harvey P. Dale, Nov 30 2014 *)
|
|
CROSSREFS
|
Sequence in context: A049530 A158404 A004929 * A154473 A093242 A031527
Adjacent sequences: A031733 A031734 A031735 * A031737 A031738 A031739
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
David W. Wilson
|
|
STATUS
|
approved
|
|
|
|