The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A031348 2-multiplicative persistence: number of iterations of "multiply 2nd powers of digits" needed to reach 0 or 1. 4
 0, 7, 6, 6, 3, 5, 5, 4, 5, 1, 1, 7, 6, 6, 3, 5, 5, 4, 5, 1, 7, 6, 5, 4, 2, 4, 5, 3, 4, 1, 6, 5, 5, 4, 3, 4, 4, 3, 4, 1, 6, 4, 4, 3, 2, 3, 3, 2, 4, 1, 3, 2, 3, 2, 3, 2, 3, 2, 2, 1, 5, 4, 4, 3, 2, 4, 5, 2, 4, 1, 5, 5, 4, 3, 3, 5, 2, 5, 4, 1, 4, 3, 3, 2, 2, 2, 5, 2, 3, 1, 5, 4, 4, 4, 2, 4, 4, 3, 3 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 REFERENCES M. Gardner, Fractal Music, Hypercards and More Mathematical Recreations from Scientific American, Persistence of Numbers, pp. 120-1; 186-7, W. H. Freeman, NY, 1992. LINKS Seiichi Manyama, Table of n, a(n) for n = 1..10000 M. R. Diamond, Multiplicative persistence base 10: some new null results. N. J. A. Sloane, The persistence of a number, J. Recreational Math., 6 (1973), 97-98. Eric Weisstein's World of Mathematics, Multiplicative Persistence EXAMPLE a(14) = 6 because 14 -> 1^2 * 4^2 = 16; 16 -> 1^2 * 6^2 = 36; 36 -> 3^2 * 6^2 = 324; 324 -> 3^2 * 2^2 * 4^2 = 576; 576 -> 5^2 * 7^2 * 6^2 = 44100; 44100 -> 0 => the trajectory is 14 -> 16 -> 36 -> 324 -> 576 -> 44100 -> 0 with 6 iterations. - Michel Lagneau, May 22 2013 MATHEMATICA m2pd[n_]:=Length[NestWhileList[Times@@(IntegerDigits[#]^2)&, n, #>1&]]-1; Array[m2pd, 100] (* Harvey P. Dale, Apr 19 2020 *) PROG (PARI) f(n) = my(d=digits(n)); prod(k=1, #d, d[k]^2); a(n) = if (n==1, 0, my(nb=1); while(((new = f(n)) > 1), n = new; nb++); nb); \\ Michel Marcus, Jun 13 2018 CROSSREFS Cf. A031346. Sequence in context: A188736 A265304 A102769 * A247674 A109696 A257233 Adjacent sequences:  A031345 A031346 A031347 * A031349 A031350 A031351 KEYWORD nonn,base AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 26 09:37 EDT 2020. Contains 334620 sequences. (Running on oeis4.)