login
A031123
Expansion of Sum_{m>=1} z^(m^2)/(1-z^((m+1)^2)).
1
0, 1, 0, 0, 1, 1, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 3, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 3, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 2, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 2, 0, 0, 1, 1, 0, 0, 0
OFFSET
0,10
LINKS
N. Luzin, Function: Part II, Amer. Math. Monthly, 105 (1998), 263-270.
MATHEMATICA
nmax = 100; CoefficientList[Series[Sum[x^(m^2)/(1 - x^((m+1)^2)), {m, 1, Floor[Sqrt[nmax]] + 1}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 04 2017 *)
PROG
(PARI) lista(nn) = concat(0, Vec(sum(m=1, nn, z^(m^2)/(1-z^((m+1)^2) + O(z^nn))))); \\ Michel Marcus, Oct 02 2017
CROSSREFS
Cf. A031124.
Sequence in context: A359241 A047753 A303947 * A359542 A104194 A292261
KEYWORD
nonn
STATUS
approved