

A030982


Number of noncrossing nonplanted bushes with n nodes, i.e., rooted noncrossing trees with n nodes and no nodes of degree 1.


1



0, 1, 1, 7, 18, 80, 284, 1169, 4628, 19137, 79165, 333058, 1410608, 6029816, 25941384, 112315945, 488862888, 2138161043, 9391903131, 41414729419, 183264846010, 813564012660, 3622193670040, 16170171489820, 72364908958800, 324586284275500, 1458976377988636
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,4


LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Index entries for sequences related to rooted trees


FORMULA

a(n) = 5*Sum_{k=2..n} ((1)^(nk)*2^(nk)*k*C(n,k)*C(3*k2,k2)/(2*k+1))/n.
Recurrence: 2*n*(2*n+1)*a(n) = (n1)*(11*n12)*a(n1) + 6*(9*n^221*n+8) * a(n2)  4*(n3)*(11*n56)*a(n3)  152*(n4)*(n3)*a(n4).  Vaclav Kotesovec, Oct 24 2012
a(n) ~ 5*19^(n+1/2)/(27*sqrt(Pi)*4^(n+1)*n^(3/2)).  Vaclav Kotesovec, Oct 24 2012
a(n) = A030981(n)  A030980(n).  Andrew Howroyd, Nov 12 2017


MATHEMATICA

Table[5*Sum[(1)^(nk)*2^(nk)*k*Binomial[n, k]*Binomial[3*k2, k2]/ (2*k+1), {k, 2, n}]/n, {n, 1, 20}] (* Vaclav Kotesovec, Oct 24 2012 *)


PROG

(PARI) a(n) = 5*sum(k=2, n, (1)^(nk)*2^(nk)*k*binomial(n, k)*binomial(3*k2, k2)/(2*k+1))/n; \\ Andrew Howroyd, Nov 12 2017


CROSSREFS

Cf. A030980, A030981.
Sequence in context: A019534 A024830 A262489 * A203381 A207158 A304992
Adjacent sequences: A030979 A030980 A030981 * A030983 A030984 A030985


KEYWORD

nonn,easy


AUTHOR

Emeric Deutsch


STATUS

approved



