This site is supported by donations to The OEIS Foundation.



(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A030700 Decimal expansion of 3^n contains no zeros (probably finite). 35


%S 0,1,2,3,4,5,6,7,8,9,11,12,13,14,19,23,24,26,27,28,31,34,68

%N Decimal expansion of 3^n contains no zeros (probably finite).

%C See A007377 for the analog for 2^n (final term seems to be 86), A008839 for 5^n (final term seems to be 58), and others listed in cross-references. - _M. F. Hasler_, Mar 07 2014

%C See A238939(n) = 3^a(n) for the actual powers. - _M. F. Hasler_, Mar 08 2014

%H M. F. Hasler, <a href="https://oeis.org/wiki/Zeroless_powers">Zeroless powers</a>, OEIS Wiki, Mar 07 2014

%H W. Schneider, <a href="/A007496/a007496.html">NoZeros: Powers n^k without Digit Zero</a> [Cached copy]

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Zero.html">Zero</a>

%t Do[If[Union[RealDigits[3^n][[1]]][[1]]!=0, Print[n]], {n, 0,10000}] (* _Vincenzo Librandi_, Oct 19 2012 *)

%t Select[Range[0,70],DigitCount[3^#,10,0]==0&] (* _Harvey P. Dale_, Feb 06 2019 *)

%o (MAGMA) [n: n in [0..500] | not 0 in Intseq(3^n) ]; // _Vincenzo Librandi_, Oct 19 2012

%o (PARI) is_A030700(n)=vecmin(digits(3^n)) \\ _M. F. Hasler_, Mar 07 2014

%o (PARI) A030700=select( is_A030700, [0..199]) \\ _M. F. Hasler_, Jun 14 2018

%Y For the zeroless numbers (powers x^n), see A238938, A238939, A238940, A195948, A238936, A195908, A195946, A195945, A195942, A195943, A103662.

%Y For the corresponding exponents, see A007377, A030700 (this), A030701, A008839, A030702, A030703, A030704, A030705, A030706, A195944.

%Y For other related sequences, see A052382, A027870, A102483, A103663.

%K nonn,base

%O 1,3

%A _Eric W. Weisstein_

%E Initial term 0 added by _Vincenzo Librandi_, Oct 19 2012

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 22 10:03 EDT 2019. Contains 325219 sequences. (Running on oeis4.)