login
Dimension of multiples of minimal representation of complex Lie algebra F4.
1

%I #11 May 04 2013 04:54:32

%S 26,324,2652,16302,81081,342056,1264120,4188834,12664184,35405968,

%T 92512368,227854536,532703874,1189056024,2546364040,5253305915,

%U 10477865970,20265831300,38111646300,69848806950,125012625075

%N Dimension of multiples of minimal representation of complex Lie algebra F4.

%D Cf. table 5 of Seminar on Lie Groups and Algebraic Groups of Onishchik and Vinberg [ Springer Verlag 1990 ].

%H Vincenzo Librandi, <a href="/A030647/b030647.txt">Table of n, a(n) for n = 1..1000</a>

%F 1/1617000*(2*n+11)*binomial(n+10, 3)*binomial(n+3, 3)*binomial(n+7, 4)^2

%F G.f.: (x+1)*(x^4+9*x^3+19*x^2+9*x+1)/(x-1)^16. - _Vaclav Kotesovec_, Oct 21 2012

%t Rest[CoefficientList[Series[(x+1)*(x^4+9*x^3+19*x^2+9*x+1)/(x-1)^16,{x,0,20}],x]] (* _Vaclav Kotesovec_, Oct 21 2012 *)

%o (PARI) x='x+O('x^66); Vec(-1 + (x+1)*(x^4+9*x^3+19*x^2+9*x+1)/(x-1)^16) \\ _Joerg Arndt_, May 04 2013

%K nonn,easy

%O 1,1

%A Paolo Dominici (pl.dm(AT)libero.it)