

A030567


Triangle T(n,k): Write n in base 6, reverse order of digits, to get row n.


29



0, 1, 2, 3, 4, 5, 0, 1, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 0, 2, 1, 2, 2, 2, 3, 2, 4, 2, 5, 2, 0, 3, 1, 3, 2, 3, 3, 3, 4, 3, 5, 3, 0, 4, 1, 4, 2, 4, 3, 4, 4, 4, 5, 4, 0, 5, 1, 5, 2, 5, 3, 5, 4, 5, 5, 5, 0, 0, 1, 1, 0, 1, 2, 0, 1, 3, 0, 1, 4, 0, 1, 5, 0, 1, 0, 1, 1, 1, 1, 1, 2
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

If columns are numbered starting with k=0, then T(n,k) contains the coefficient of 6^k in n's base6 expansion.  M. F. Hasler, Jul 21 2013


LINKS

Table of n, a(n) for n=0..90.


MATHEMATICA

Flatten[Table[Reverse[IntegerDigits[n, 6]], {n, 0, 50}]] (* Harvey P. Dale, Sep 27 2015 *)


PROG

(PARI) A030567(n, k=1)=/*k<0&&error("Flattened sequence not yet implemented.")*/n\6^k%6 \\ Assuming that columns start with k=0, cf. comment. TO DO: implement flattened sequence, such that A030567(n)=a(n).  M. F. Hasler, Jul 21 2013


CROSSREFS

See A030548 for a quite complete list of crossreferences.
Cf. A030568  A030573 for positions of a given digit.
Cf. A030575  A030580 for run lengths, A030581  A030585 for more.
Row sums (same as those of A030548) are in A053827.
Cf. A030308, A030341, A030386, A031235, A031007, A031045, A031087, A031298 for the base2 to base10 analogs.
Sequence in context: A037848 A037884 A303534 * A049265 A010875 A260187
Adjacent sequences: A030564 A030565 A030566 * A030568 A030569 A030570


KEYWORD

nonn,base,tabf,less


AUTHOR

Clark Kimberling


EXTENSIONS

Initial 0 and better name by Philippe Deléham, Oct 20 2011.
Edited and crossrefs added by M. F. Hasler, Jul 21 2013


STATUS

approved



