%I #40 Sep 08 2022 08:44:50
%S 1,2,3,4,5,1,0,1,1,1,2,1,3,1,4,1,5,2,0,2,1,2,2,2,3,2,4,2,5,3,0,3,1,3,
%T 2,3,3,3,4,3,5,4,0,4,1,4,2,4,3,4,4,4,5,5,0,5,1,5,2,5,3,5,4,5,5,1,0,0,
%U 1,0,1,1,0,2,1,0,3,1,0,4,1,0,5,1,1,0,1,1,1,1
%N Write n in base 6 and juxtapose.
%C Base-6 analog of what in base 7 is A030998, in base 10 is A007376. In general, the Barbier infinite word base n (in this case, 6). - _Jonathan Vos Post_, May 13 2007
%C An irregular table in which the n-th row lists the base-6 digits of n. - _Jason Kimberley_, Dec 07 2012
%C The base-6 Champernowne constant: It is normal in base 6. - _Jason Kimberley_, Dec 07 2012
%t Flatten@ IntegerDigits[ Range@ 50, 6] (* or *)
%t almostNatural[n_, b_] := Block[{m = 0, d = n, i = 1, l, p}, While[m <= d, l = m; m = (b - 1) i*b^(i - 1) + l; i++]; i--; p = Mod[d - l, i]; q = Floor[(d - l)/i] + b^(i - 1); If[p != 0, IntegerDigits[q, b][[p]], Mod[q - 1, b]]]; Array[ a[#, 6] &, 105] (* _Robert G. Wilson v_, Jul 01 2014 *)
%o (Magma) &cat[Reverse(IntegerToSequence(n,6)):n in[1..31]]; // _Jason Kimberley_, Dec 07 2012
%o (Python)
%o from itertools import count, chain, islice
%o from sympy.ntheory.factor_ import digits
%o def A030548_gen(): return chain.from_iterable(digits(m, 6)[1:] for m in count(1))
%o A030548_list = list(islice(A030548_gen(), 30)) # _Chai Wah Wu_, Jan 07 2022
%Y Tables in which the n-th row lists the base b digits of n: A030190 and A030302 (b=2), A003137 and A054635 (b=3), A030373 (b=4), A031219 (b=5), this sequence (b=6), A030998 (b=7), A031035 and A054634 (b=8), A031076 (b=9), A007376 and A033307 (b=10). - _Jason Kimberley_, Dec 06 2012
%Y Cf. A030567 for the same table with reversed rows.
%K nonn,base,cons,easy,tabf
%O 1,2
%A _Clark Kimberling_
%E Edited by _N. J. A. Sloane_ at the suggestion of _Andrew S. Plewe_, Aug 23 2007