login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A030469 Primes which are concatenations of three consecutive primes. 17

%I

%S 5711,111317,171923,313741,414347,8997101,229233239,239241251,

%T 263269271,307311313,313317331,317331337,353359367,359367373,

%U 383389397,389397401,401409419,409419421,439443449,449457461

%N Primes which are concatenations of three consecutive primes.

%C a(n) = "p(k) p(k+1) p(k+2)" where p(k) is k-th prime

%C It is conjectured that sequence is infinite. - from Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Nov 09 2009

%D Richard E. Crandall, Carl Pomerance: Prime Numbers, Springer 2005 - from Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Nov 09 2009

%D John Derbyshire: Prime obsession, Joseph Henry Press, Washington, DC 2003 - from Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Nov 09 2009

%D Marcus du Sautoy: Die Musik der Primzahlen. Auf den Spuren des groessten Raetsels der Mathematik, Beck, Muenchen 2004

%H Zak Seidov, <a href="/A030469/b030469.txt">Table of n, a(n) for n = 1..1000</a>

%F A132903 INTERSECT A000040. - _R. J. Mathar_, Nov 11 2009

%e (1) 5=p(3), 7=p(4), 11=p(5) gives a(1).

%e (2) 7=p(4), 11=p(5), 13=p(6), but 71113 = 7 x 10159

%t Select[Table[FromDigits[Flatten[IntegerDigits/@{Prime[n],Prime[n+1],Prime[n+2]}]],{n,11000}],PrimeQ] (* _Zak Seidov_, Oct 16 2009 *)

%t concat[{a_,b_,c_}]:=FromDigits[Flatten[IntegerDigits/@{a,b,c}]]; Select[ concat/@ Partition[ Prime[ Range[200]],3,1],PrimeQ] (* _Harvey P. Dale_, Sep 06 2017 *)

%o (PARI) for(i=1,999, isprime(p=eval(Str(prime(i),prime(i+1),prime(i+2)))) & print1(p," ")) \\ _M. F. Hasler_, Nov 10 2009

%Y Cf. A030461, A167517, A132903, A068655, A030997, A030473, A086041, A099727.

%K nonn,base

%O 1,1

%A _Patrick De Geest_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 13 07:51 EDT 2021. Contains 342935 sequences. (Running on oeis4.)