login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A030301 n-th run has length 2^(n-1). 6
0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Table of n, a(n) for n=1..105.

FORMULA

a(n) = 0 iff n has an odd number of digits in binary, = 1 otherwise. - Henry Bottomley, Apr 06 2000

a(n) = (1/2)*{1-(-1)^floor(log(n)/log(2))}. - Benoit Cloitre, Nov 22 2001

a(n) = 1-a(floor(n/2)). - Vladeta Jovovic, Aug 04 2003

MATHEMATICA

nMax = 7; Table[1 - Mod[n, 2], {n, nMax}, {2^(n-1)}] // Flatten (* Jean-Fran├žois Alcover, Oct 20 2016 *)

PROG

(PARI) a(n)=if(n<1, 0, 1-length(binary(n))%2)

(PARI) a(n)=if(n<1, 0, if(n%2==0, -a(n/2)+1, -a((n-1)/2)+1-(((n-1)/2)==0))) /* Ralf Stephan */

(MAGMA) [Floor(Log(n)/Log(2)) mod 2: n in [1..100]]; // Vincenzo Librandi, Jun 23 2015

CROSSREFS

a(n) = A000523(n) mod 2 = (A029837(n+1)+1) mod 2.

Cf. A030300. Partial sums give A079954.

Sequence in context: A171386 A125720 A095130 * A093692 A105384 A057212

Adjacent sequences:  A030298 A030299 A030300 * A030302 A030303 A030304

KEYWORD

nonn,easy

AUTHOR

Jean-Paul Delahaye (Jean-Paul.Delahaye(AT)lifl.fr)

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified March 26 10:42 EDT 2017. Contains 284111 sequences.