The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A030237 Catalan's triangle with right border removed (n > 0, 0 <= k < n). 23
 1, 1, 2, 1, 3, 5, 1, 4, 9, 14, 1, 5, 14, 28, 42, 1, 6, 20, 48, 90, 132, 1, 7, 27, 75, 165, 297, 429, 1, 8, 35, 110, 275, 572, 1001, 1430, 1, 9, 44, 154, 429, 1001, 2002, 3432, 4862 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS This triangle appears in the totally asymmetric exclusion process as Y(alpha=1,beta=1,n,m), written in the Derrida et al. reference as Y_n(m) for alpha=1, beta=1. - Wolfdieter Lang, Jan 13 2006 LINKS Reinhard Zumkeller, Rows n=1..151 of triangle, flattened B. Derrida, E. Domany and D. Mukamel, An exact solution of a one-dimensional asymmetric exclusion model with open boundaries, J. Stat. Phys. 69, 1992, 667-687; eqs. (20), (21), p. 672. Wolfdieter Lang, First 10 rows. Andrew Misseldine, Counting Schur Rings over Cyclic Groups, arXiv preprint arXiv:1508.03757 [math.RA], 2015. See Fig. 6. FORMULA T(n,m) = (n-m+1)*binomial(n+m,m)/(n+1). EXAMPLE 1; 1,2; 1,3,5; 1,4,9,14; 1,5,14,28,42; 1,6,20,48,90,132; 1,7,27,75,165,297,429; 1,8,35,110,275,572,1001,1430; 1,9,44,154,429,1001,2002,3432,4862; MAPLE A030237 := proc(n, m)     (n-m+1)*binomial(n+m, m)/(n+1) ; end proc: # R. J. Mathar, May 31 2016 MATHEMATICA T[n_, k_] := T[n, k] = Which[k==0, 1, k>n, 0, True, T[n-1, k] + T[n, k-1]]; Table[T[n, k], {n, 1, 9}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, Nov 14 2017 *) PROG (Haskell) a030237 n k = a030237_tabl !! n !! k a030237_row n = a030237_tabl !! n a030237_tabl = map init \$ tail a009766_tabl -- Reinhard Zumkeller, Jul 12 2012 (PARI) T(n, k) = (n-k+1)*binomial(n+k, k)/(n+1) \\ Andrew Howroyd, Feb 23 2018 CROSSREFS Cf. A009766. Row sums give A071724(n). The following are all versions of (essentially) the same Catalan triangle: A009766, A030237, A033184, A059365, A099039, A106566, A130020, A047072. Diagonals give A000108 A000245 A002057 A000344 A003517 A000588 A003518 A003519 A001392, ... Sequence in context: A297395 A297595 A049069 * A210557 A118243 A210233 Adjacent sequences:  A030234 A030235 A030236 * A030238 A030239 A030240 KEYWORD nonn,tabl,easy AUTHOR EXTENSIONS Missing a(8) = T(7,0) = 1 inserted by Reinhard Zumkeller, Jul 12 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 18 07:33 EST 2021. Contains 340250 sequences. (Running on oeis4.)