login
Number of chiral polyominoes with n cells.
6

%I #50 Apr 15 2023 14:34:07

%S 0,0,0,0,2,6,25,88,335,1215,4534,16823,63159,237679,900341,3423201,

%T 13073163,50095285,192599091,742576616,2870584814,11122879867,

%U 43191525139,168046317330,654998425237,2557224396342,9999083912711,39153000738695,153511081627903

%N Number of chiral polyominoes with n cells.

%C For n>0, A000105(n) + a(n) = A000988(n) because the number of free polyominoes plus the number of polyominoes lacking bilateral symmetry equals the number of one-sided polyominoes. - _Graeme McRae_, Jan 05 2006

%C For n>0, each chiral pair is counted as one. - _Robert A. Russell_, Feb 23 2022

%H John Mason, <a href="/A030228/b030228.txt">Table of n, a(n) for n = 0..50</a> (terms 1..45 from Andrew Howroyd, 46..48 from Robert A. Russell)

%H D. H. Redelmeier, <a href="http://dx.doi.org/10.1016/0012-365X(81)90237-5">Counting polyominoes: yet another attack</a>, Discrete Math., 36 (1981), 191-203.

%F For n>0, a(n) = A000988(n) - A000105(n). - _Graeme McRae_, Jan 05 2006

%F a(n) = A006749(n) + A006747(n) + A144553(n). - _Andrew Howroyd_, Dec 04 2018

%F a(n) = A000105(n) - A030227(n). - _Robert A. Russell_, Feb 02 2019

%F For n>0, (A000988(n) - A030227(n)) / 2. - _Robert A. Russell_, Feb 23 2022

%e For a(4)=2, the two chiral tetrominoes are XXX and XX .

%e X XX

%t A000105 = Cases[Import["https://oeis.org/A000105/b000105.txt", "Table"], {_, _}][[All, 2]];

%t A000988 = Cases[Import["https://oeis.org/A000988/b000988.txt", "Table"], {_, _}][[All, 2]];

%t a[n_] := A000988[[n]] - A000105[[n + 1]];

%t Array[a, 45] (* _Jean-François Alcover_, Sep 08 2019, after _Graeme McRae_ *)

%Y Cf. A000988 (oriented), A000105 (unoriented), A030227 (achiral).

%Y Cf. A006747, A006749, A144553 (subcategories).

%K nonn

%O 0,5

%A _David W. Wilson_

%E Terms a(23) and beyond from _Andrew Howroyd_, Dec 04 2018

%E Name edited by _Robert A. Russell_, Feb 03 2019

%E a(0)=0 corrected by _John Mason_, Jan 12 2023