login
A030213
Expansion of eta(q^5)*eta(q^19).
6
0, 1, 0, 0, 0, 0, -1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 0, 1, -1, 0, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, -1, 0, 0, 0
OFFSET
0,132
LINKS
M. Koike, On McKay's conjecture, Nagoya Math. J., 95 (1984), 85-89.
FORMULA
Expansion of x * Product_{k>=1} (1 - x^(5*k)) * (1 - x^(19*k)). - Seiichi Manyama, Oct 18 2016
MATHEMATICA
eta = QPochhammer;
CoefficientList[q eta[q^5] eta[q^19] + O[q]^100, q] (* Jean-François Alcover, Feb 21 2021 *)
CROSSREFS
Cf. Expansion of eta(q^k)*eta(q^(24 - k)): A030199 (k=1), A030201 (k=3), this sequence (k=5), A030214 (k=7), A030215 (k=9), A030216 (k=10), A030217 (k=11).
Sequence in context: A284683 A369968 A288673 * A187969 A132151 A370124
KEYWORD
sign
AUTHOR
STATUS
approved