login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A030206 Expansion of q^(-1/3) * eta(q)^2 * eta(q^3)^2 in powers of q. 4
1, -2, -1, 0, 5, 4, -7, 0, -5, 2, -4, 0, 11, 0, 8, 0, -6, -10, 0, 0, -1, -8, 5, 0, -7, 14, 17, 0, 0, 0, -5, 0, -19, 10, -13, 0, 2, -4, 0, 0, -11, 8, 20, 0, 7, 0, 23, 0, 0, -22, -19, 0, 14, 0, -25, 0, 12, -16, 5, 0, -7, 0, 0, 0, 23, 12, 11, 0, 0, 20, -13, 0, 4, 0, -28, 0, -22, 0, 0, 0, 17, 2, -35, 0, 0, 16, -11, 0, 0, -10 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Number 44 of the 74 eta-quotients listed in Table I of Martin 1996.

Denoted by g_2(q) in Cynk and Hulek in Remark 3.4 on page 12 as the unique weight 2 newform of level 27.

This is a member of an infinite family of integer weight modular forms. g_1 = A033687, g_2 = A030206, g_3 = A130539, g_4 = A000731. - Michael Somos, Aug 24 2012

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

REFERENCES

M. Koike, On McKay's conjecture, Nagoya Math. J., 95 (1984), 85-89.

Y. Martin, Multiplicative eta-quotients, Trans. Amer. Math. Soc. 348 (1996), no. 12, 4825-4856, see page 4852 Table I.

LINKS

Table of n, a(n) for n=0..89.

S. R. Finch, Powers of Euler's q-Series, (arXiv:math.NT/0701251).

S. Cynk and K. Hulek, Construction and examples of higher-dimensional modular Calabi-Yau manifolds

W. Stein, Modular Forms Database.

FORMULA

Expansion of q^(-1/3) * b(q) * c(q) / 3 in powers of q where b(), c() are cubic AGM theta functions. - Michael Somos, Nov 01 2006

Coefficients of L-series for elliptic curve "27a3": y^2 + y = x^3. - Michael Somos, Aug 13 2006

Euler transform of period 3 sequence [ -2, -2, -4, ...]. - Michael Somos, Dec 06 2004

G.f. is a period 1 Fourier series which satisfies f(-1 / (27 t)) = 27 (t/i)^2 f(t) where q = exp(2 Pi i t).

G.f.: Product_{k>0} (1 - x^k)^2 * (1 - x^(3*k))^2.

a(n) = b(3*n + 1) where b(n) is multiplicative and b(3^e) = 0^e, b(p^e) = (1 + (-1)^e) / 2 * (-1)^(e/2) * p^(e/2), if p == 2 (mod 3), b(p^e) = b(p) * b(p^(e-1)) - p * b(p^(e-2)). - Michael Somos, Aug 13 2006

Given g.f. A(x), then B(x)= x*A(x^3) satisfies 0 = f(B(x), B(x^2), B(x^4)) where f(u, v, w) = v^3 - u*w * (u + 4*w). - Michael Somos, Dec 06 2004

a(4*n + 3) = a(16*n + 13) = 0. - Michael Somos, Oct 19 2005

a(4*n + 1) = -2 * a(n). - Michael Somos, Dec 06 2004

a(25*n + 8) = -5 * a(n). Convolution square of A030203. - Michael Somos, Mar 13 2012

EXAMPLE

G.f. = 1 - 2*x - x^2 + 5*x^4 + 4*x^5 - 7*x^6 - 5*x^8 + 2*x^9 - 4*x^10 + 11*x^12 + ...

G.f. = q - 2*q^4 - q^7 + 5*q^13 + 4*q^16 - 7*q^19 - 5*q^25 + 2*q^28 - 4*q^31 + ...

MATHEMATICA

a[ n_] := SeriesCoefficient[ (QPochhammer[ x] QPochhammer[ x^3])^2, {x, 0, n}]; (* Michael Somos, Jun 12 2014 *)

PROG

(PARI) {a(n) = local(A, p, e, x, y, a0, a1); if( n<0, 0, n = 3*n + 1; A = factor(n); prod( k=1, matsize(A)[1], if( p=A[k, 1], e=A[k, 2]; if( p==3, 0, if( p%3==2, if( e%2, 0, (-1)^(e/2) * p^(e/2)), for( i=1, sqrtint(4*p\27), if( issquare(4*p - 27*i^2, &y), break)); a0=1; a1 = y*= (-1)^(y%3); for( i=2, e, x = y*a1 - p*a0; a0=a1; a1=x); a1)))))}; /* Michael Somos, Aug 13 2006 */

(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^3 + A)^2, n))}; /* Michael Somos, Feb 19 2007 */

(PARI) {a(n) = ellak( ellinit( [0, 0, 1, 0, 0], 1), 3*n + 1)}; /* Michael Somos, Jun 12 2014 */

(Sage) ModularForms( Gamma0(27), 2, prec=271).0; # Michael Somos, Jun 12 2014

(MAGMA) A := Basis( ModularForms( Gamma0(27), 2), 271); A[2] - 2*A[5]; /* Michael Somos, Jun 12 2014 */

(MAGMA) qEigenform( EllipticCurve( [0, 0, 1, 0, 0]), 271); /* Michael Somos, Jun 12 2014 */

CROSSREFS

Cf. A030203.

Sequence in context: A066435 A171960 A182376 * A212768 A133336 A176056

Adjacent sequences:  A030203 A030204 A030205 * A030207 A030208 A030209

KEYWORD

sign

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 21 14:12 EST 2014. Contains 249779 sequences.