login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A030206 Expansion of q^(-1/3) * eta(q)^2 * eta(q^3)^2 in powers of q. 5
1, -2, -1, 0, 5, 4, -7, 0, -5, 2, -4, 0, 11, 0, 8, 0, -6, -10, 0, 0, -1, -8, 5, 0, -7, 14, 17, 0, 0, 0, -5, 0, -19, 10, -13, 0, 2, -4, 0, 0, -11, 8, 20, 0, 7, 0, 23, 0, 0, -22, -19, 0, 14, 0, -25, 0, 12, -16, 5, 0, -7, 0, 0, 0, 23, 12, 11, 0, 0, 20, -13, 0, 4, 0, -28, 0, -22, 0, 0, 0, 17, 2, -35, 0, 0, 16, -11, 0, 0, -10 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Number 44 of the 74 eta-quotients listed in Table I of Martin 1996.

Denoted by g_2(q) in Cynk and Hulek in Remark 3.4 on page 12 as the unique weight 2 newform of level 27.

This is a member of an infinite family of integer weight modular forms. g_1 = A033687, g_2 = A030206, g_3 = A130539, g_4 = A000731. - Michael Somos, Aug 24 2012

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..10000

S. R. Finch, Powers of Euler's q-Series, arXiv:math/0701251 [math.NT], 2007.

S. Cynk and K. Hulek, Construction and examples of higher-dimensional modular Calabi-Yau manifolds, arXiv:math/0509424 [math.AG], 2005-2006.

M. Koike, On McKay's conjecture, Nagoya Math. J., 95 (1984), 85-89.

Y. Martin, Multiplicative eta-quotients, Trans. Amer. Math. Soc. 348 (1996), no. 12, 4825-4856, see page 4852 Table I.

Michael Somos, Index to Yves Martin's list of 74 multiplicative eta-quotients and their A-numbers

FORMULA

Expansion of q^(-1/3) * b(q) * c(q) / 3 in powers of q where b(), c() are cubic AGM theta functions. - Michael Somos, Nov 01 2006

Coefficients of L-series for elliptic curve "27a3": y^2 + y = x^3. - Michael Somos, Aug 13 2006

Euler transform of period 3 sequence [ -2, -2, -4, ...]. - Michael Somos, Dec 06 2004

G.f. is a period 1 Fourier series which satisfies f(-1 / (27 t)) = 27 (t/i)^2 f(t) where q = exp(2 Pi i t).

G.f.: Product_{k>0} (1 - x^k)^2 * (1 - x^(3*k))^2.

a(n) = b(3*n + 1) where b(n) is multiplicative with b(3^e) = 0^e, b(p^e) = (1 + (-1)^e) / 2 * (-1)^(e/2) * p^(e/2), if p == 2 (mod 3), otherwise b(p^e) = b(p) * b(p^(e-1)) - p * b(p^(e-2)). - Michael Somos, Aug 13 2006

Given g.f. A(x), then B(q)= q*A(q^3) satisfies 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = v^3 - u*w * (u + 4*w). - Michael Somos, Dec 06 2004

a(4*n + 3) = a(16*n + 13) = 0. - Michael Somos, Oct 19 2005

a(4*n + 1) = -2 * a(n). - Michael Somos, Dec 06 2004

a(25*n + 8) = -5 * a(n). Convolution square of A030203. - Michael Somos, Mar 13 2012

EXAMPLE

G.f. = 1 - 2*x - x^2 + 5*x^4 + 4*x^5 - 7*x^6 - 5*x^8 + 2*x^9 - 4*x^10 + 11*x^12 + ...

G.f. = q - 2*q^4 - q^7 + 5*q^13 + 4*q^16 - 7*q^19 - 5*q^25 + 2*q^28 - 4*q^31 + ...

MATHEMATICA

a[ n_] := SeriesCoefficient[ (QPochhammer[ x] QPochhammer[ x^3])^2, {x, 0, n}]; (* Michael Somos, Jun 12 2014 *)

PROG

(PARI) {a(n) = my(A, p, e, x, y, a0, a1); if( n<0, 0, n = 3*n + 1; A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==3, 0, p%3==2, if( e%2, 0, (-1)^(e/2) * p^(e/2)), for( i=1, sqrtint(4*p\27), if( issquare(4*p - 27*i^2, &y), break)); a0=1; a1 = y*= (-1)^(y%3); for( i=2, e, x = y*a1 - p*a0; a0=a1; a1=x); a1)))}; /* Michael Somos, Aug 13 2006 */

(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^3 + A)^2, n))}; /* Michael Somos, Feb 19 2007 */

(PARI) {a(n) = ellak( ellinit( [0, 0, 1, 0, 0], 1), 3*n + 1)}; /* Michael Somos, Jun 12 2014 */

(Sage) ModularForms( Gamma0(27), 2, prec=271).0; # Michael Somos, Jun 12 2014

(MAGMA) A := Basis( ModularForms( Gamma0(27), 2), 271); A[2] - 2*A[5]; /* Michael Somos, Jun 12 2014 */

(MAGMA) qEigenform( EllipticCurve( [0, 0, 1, 0, 0]), 271); /* Michael Somos, Jun 12 2014 */

(MAGMA) Basis( CuspForms( Gamma0(27), 2), 271)[1]; /* Michael Somos, Mar 24 2015 */

CROSSREFS

Cf. A030203.

Sequence in context: A261301 A171960 A182376 * A212768 A133336 A269951

Adjacent sequences:  A030203 A030204 A030205 * A030207 A030208 A030209

KEYWORD

sign

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 4 17:26 EST 2016. Contains 278755 sequences.