login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A030112 Number of distributive lattices; also number of paths with n turns when light is reflected from 8 glass plates. 11
1, 8, 36, 204, 1086, 5916, 31998, 173502, 940005, 5094220, 27604798, 149590922, 810627389, 4392774126, 23804329059, 128995094597, 699021261776, 3787979292364, 20526967746120, 111235140046330, 602780523265720 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Let M(8) be the 8 X 8 matrix (0,0,0,0,0,0,0,1)/(0,0,0,0,0,0,1,1)/(0,0,0,0,0,1,1,1)/(0,0,0,0,1,1,1,1)/(0,0,0,1,1,1,1,1)/(0,0,1,1,1,1,1,1)/(0,1,1,1,1,1,1,1)/(1,1,1,1,1,1,1,1) and let v(8) be the vector (1,1,1,1,1,1,1,1); then v(8)*M(8)^n = (x,y,z,t,u,v, w,a(n)). - Benoit Cloitre, Sep 29 2002

For a k-glass sequence, say a(n,k), a(n,k) is always asymptotic to z(k)*w(k)^n where w(k)=(1/2)/cos(k*Pi/(2k+1)) and it is conjectured that z(k) is the root 1<x<2 of a polynomial of degree Phi(2k+1)/2. - Benoit Cloitre, Oct 16 2002

REFERENCES

J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124.

J. Haubrich, Multinacci Rijen [Multinacci sequences], Euclides (Netherlands), Vol. 74, Issue 4, 1998, pp. 131-133.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124. [Annotated scanned copy]

G. Kreweras, Les preordres totaux compatibles avec un ordre partiel, Math. Sci. Humaines No. 53 (1976), 5-30.

Index entries for linear recurrences with constant coefficients, signature (4,10,-10,-15,6,7,-1,-1).

FORMULA

a(n) = 4*a(n-1)+ 10*a(n-2)-10*a(n-3)-15*a(n-4)+ 6*a(n-5)+7*a(n-6)-a(n-7)-a(n-8). - Benoit Cloitre, Oct 09 2002

a(n) is asymptotic to z(8)*w(8)^n where w(8)=(1/2)/cos(8*Pi/17) and z(8) is the root 1<x<2 of P(8, X) = 1 +204*X -12138*X^2 -324258*X^3 +4593655*X^4+36916282X^5 -168962983*X^6 -410338673*X^7 +410338673*X^8. - Benoit Cloitre, Oct 16 2002

G.f.: (1+x)*(1-x-x^2)*(1+4*x-4*x^2-x^3+x^4)/(1-4*x-10*x^2+10*x^3+15*x^4-6*x^5-7*x^6+x^7+x^8). - Colin Barker, Mar 31 2012

MAPLE

nmax:=20: with(LinearAlgebra): M:=Matrix([[0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0, 1, 1], [0, 0, 0, 0, 0, 1, 1, 1], [0, 0, 0, 0, 1, 1, 1, 1], [0, 0, 0, 1, 1, 1, 1, 1], [0, 0, 1, 1, 1, 1, 1, 1], [0, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1]]): v:= Vector[row]([1, 1, 1, 1, 1, 1, 1, 1]): for n from 0 to nmax do b:=evalm(v&*M^n): a(n):=b[8] od: seq(a(n), n=0..nmax); # Johannes W. Meijer, Aug 03 2011

MATHEMATICA

CoefficientList[Series[(1+x)*(1-x-x^2)*(1+4*x-4*x^2-x^3+x^4)/(1-4*x-10*x^2+10*x^3+15*x^4-6*x^5-7*x^6+x^7+x^8), {x, 0, 30}], x] (* Vincenzo Librandi, Apr 22 2012 *)

PROG

(PARI) k=8; M(k)=matrix(k, k, i, j, if(1-sign(i+j-k), 0, 1)); v(k)=vector(k, i, 1); a(n)=vecmax(v(k)*M(k)^n)

(MAGMA) I:=[1, 8, 36, 204, 1086, 5916, 31998, 173502]; [n le 8 select I[n] else 4*Self(n-1)+10*Self(n-2)-10*Self(n-3)-15*Self(n-4)+6*Self(n-5)+7*Self(n-6)-Self(n-7)-Self(n-8):  n in [1..25]]; // Vincenzo Librandi, Apr 22 2012

CROSSREFS

See also A006356-A006359, A025030, A030113-A030116.

Sequence in context: A079819 A238815 A290357 * A001555 A032770 A032794

Adjacent sequences:  A030109 A030110 A030111 * A030113 A030114 A030115

KEYWORD

nonn,easy

AUTHOR

Jacques Haubrich (jhaubrich(AT)freeler.nl)

EXTENSIONS

More terms from Benoit Cloitre, Sep 29 2002

Comment corrected by Johannes W. Meijer, Aug 03 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 08:53 EST 2019. Contains 329788 sequences. (Running on oeis4.)