This site is supported by donations to The OEIS Foundation.

"Email this user" was broken Aug 14 to 9am Aug 16. If you sent someone a message in this period, please send it again.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A030111 Triangular array in which k-th entry in n-th row is C([ (n+k)/2 ],k) (1<=k<=n). 4
 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 3, 3, 4, 1, 1, 3, 6, 4, 5, 1, 1, 4, 6, 10, 5, 6, 1, 1, 4, 10, 10, 15, 6, 7, 1, 1, 5, 10, 20, 15, 21, 7, 8, 1, 1, 5, 15, 20, 35, 21, 28, 8, 9, 1, 1, 6, 15, 35, 35, 56, 28, 36, 9, 10, 1, 1, 6, 21, 35, 70, 56, 84, 36, 45, 10, 11, 1, 1, 7, 21, 56, 70, 126, 84, 120, 45, 55, 11, 12, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS Same as A046854, but missing the initial column of ones. Riordan array (1/((1-x)(1-x^2)),x/(1-x^2)). Diagonal sums are A052551. - Paul Barry, Sep 30 2006 LINKS Indranil Ghosh, Rows 0..125, flattened FORMULA G.f.: 1 / (1 - x - xy - x^2 + x^2y + x^3). - Ralf Stephan, Feb 13 2005 Sum(k=1, n, T(n, k)) = F(n+2)-1 where F(n) is the n-th Fibonacci number. - Benoit Cloitre, Oct 07 2002 EXAMPLE 1; 1 1; 2 1 1; 2 3 1 1; 3 3 4 1 1; 3 6 4 5 1 1; ... MATHEMATICA Flatten[Table[Binomial[Floor[(n+k)/2], k], {n, 20}, {k, n}]] (* Harvey P. Dale, Jun 03 2014 *) PROG (PARI) {T(n, k) = binomial((n+k)\2, k)}; /* Michael Somos, Jul 23 1999 */ (PARI) printp(matrix(8, 8, n, k, binomial((n+k)\2, k))) (PARI) for(n=1, 7, for(k=1, n, print1(binomial((n+k)\2, k)); if(k==n, print1("; ")); print1(" "))) CROSSREFS Cf. A066170. Sequence in context: A116855 A173265 A157744 * A096921 A275416 A037161 Adjacent sequences:  A030108 A030109 A030110 * A030112 A030113 A030114 KEYWORD tabl,nonn AUTHOR Jacques Haubrich (jhaubrich(AT)freeler.nl) EXTENSIONS Description corrected by Michael Somos, Jul 23 1999 Corrected and extended by Harvey P. Dale, Jun 03 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.