%I
%S 2,3,7,43,47,53,157,223,263,487,577,587,823,4657,5657,6653,7177,8287,
%T 9343,26777,36293,46477,58787,72727,75707,176777,363313,530353,566653,
%U 959953,1771787,2525557,2555353,2626277,3656363,4414447,7110707,8448343,20700077,54475457,71117177,72722977,135135113,393321293,457887457,505053053,672722627
%N Primes such that digits of p do not appear in p^3.
%C Primes of sequence A029785.  _Michel Marcus_, Jan 04 2015
%e 2 and 2^3=8 have no digits in common, hence 2 is in the sequence.
%t Select[Prime[Range[1500000]], Intersection[IntegerDigits[#], IntegerDigits[#^3]]=={} &] (* _Vincenzo Librandi_, Jan 04 2015 *)
%o (PARI) lista(nn) = {forprime (n=1, nn, if (#setintersect(Set(vecsort(digits(n^3))), Set(vecsort(digits(n)))) == 0, print1(n, ", ")); ); } \\ _Michel Marcus_, Jan 04 2015
%o (Python)
%o from sympy import isprime
%o A030087_list = [n for n in range(1,10**6) if set(str(n)) & set(str(n**3)) == set() and isprime(n)]
%o # _Chai Wah Wu_, Jan 05 2015
%Y Cf. A029785 (digits of n are not present in n^3), A030086 (similar with p^2).
%K nonn,base
%O 1,1
%A _Patrick De Geest_, Dec 11 1999
%E Changed offset from 0 to 1 and more terms from _Vincenzo Librandi_, Jan 04 2015
%E a(40)a(47) from _Chai Wah Wu_, Jan 05 2015
