The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A029966 Palindromic in bases 10 and 11. 47
 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 232, 343, 454, 565, 676, 787, 898, 909, 26962, 38183, 40504, 49294, 52825, 63936, 75157, 2956592, 2968692, 3262623, 3274723, 3286823, 3298923, 3360633, 3372733, 4348434, 4410144, 4422244, 4581854 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS The first 79 terms all have an odd number of decimal digits.  Is there a term with an even number of decimal digits? - Robert Israel, Nov 23 2014 LINKS Ray Chandler and Robert G. Wilson v, Table of n, a(n) for n = 1..79, a(66)-a(76) from Ray Chandler, Oct 31 2014 P. De Geest, Palindromic numbers beyond base 10 MAPLE N:= 11: # to get all terms with up to N decimal digits qpali:= proc(k, b) local L; L:= convert(k, base, b); if L = ListTools:-Reverse(L) then k else NULL fi end proc: digrev:= proc(k, b) local L, n; L:= convert(k, base, b); n:= nops(L); add(L[i]*b^(n-i), i=1..n); end proc: Res:= \$0..9: for d from 2 to N do   if d::even then     m:= d/2;     Res:= Res, seq(qpali(n*10^m + digrev(n, 10), 11), n=10^(m-1)..10^m-1);   else     m:= (d-1)/2;     Res:= Res, seq(seq(qpali(n*10^(m+1)+y*10^m+digrev(n, 10), 11), y=0..9), n=10^(m-1)..10^m-1);   fi od: Res;  # Robert Israel, Nov 23 2014 MATHEMATICA NextPalindrome[n_] := Block[{l = Floor[ Log[10, n] + 1], idn = IntegerDigits[n]}, If[ Union[idn] == {9}, Return[n + 2], If[l < 2, Return[n + 1], If[ FromDigits[ Reverse[ Take[idn, Ceiling[l/2]] ]] FromDigits[ Take[idn, -Ceiling[l/2]]], FromDigits[ Join[ Take[idn, Ceiling[l/2]], Reverse[ Take[idn, Floor[l/2]] ]]], idfhn = FromDigits[ Take[idn, Ceiling[l/2]]] + 1; idp = FromDigits[ Join[ IntegerDigits[idfhn], Drop[ Reverse[ IntegerDigits[idfhn]], Mod[l, 2]] ]]] ]]]; palQ[n_Integer, base_Integer] := Block[{idn = IntegerDigits[n, base]}, idn == Reverse[idn]]; l = {0}; a = 0; Do[a = NextPalindrome[a]; If[ palQ[a, 12], AppendTo[l, a]], {n, 100000}]; l (* Robert G. Wilson v, Sep 30 2004 *) b1=10; b2=11; lst={}; Do[d1=IntegerDigits[n, b1]; d2=IntegerDigits[n, b2]; If[d1==Reverse[d1]&&d2==Reverse[d2], AppendTo[lst, n]], {n, 0, 10000000}]; lst (* Vincenzo Librandi, Nov 23 2014 *) Select[Range[0, 10^5], PalindromeQ[#] && # == IntegerReverse[#, 11] &] (* Robert Price, Nov 09 2019 *) PROG (MAGMA) [n: n in [0..5000000] | Intseq(n) eq Reverse(Intseq(n))and Intseq(n, 11) eq Reverse(Intseq(n, 11))]; // Vincenzo Librandi, Nov 23 2014 CROSSREFS Cf. A007632, A007633, A029961, A029962, A029963, A029964, A029804, A029965, A029967, A029968, A029969, A029970, A029731, A097855, A099165. Sequence in context: A217555 A137667 A117954 * A219324 A085134 A229761 Adjacent sequences:  A029963 A029964 A029965 * A029967 A029968 A029969 KEYWORD nonn,base AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 24 09:52 EDT 2020. Contains 337975 sequences. (Running on oeis4.)