login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A029966 Palindromic in bases 10 and 11. 47
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 232, 343, 454, 565, 676, 787, 898, 909, 26962, 38183, 40504, 49294, 52825, 63936, 75157, 2956592, 2968692, 3262623, 3274723, 3286823, 3298923, 3360633, 3372733, 4348434, 4410144, 4422244, 4581854 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

The first 79 terms all have an odd number of decimal digits.  Is there a term with an even number of decimal digits? - Robert Israel, Nov 23 2014

LINKS

Ray Chandler and Robert G. Wilson v, Table of n, a(n) for n = 1..79, a(66)-a(76) from Ray Chandler, Oct 31 2014

P. De Geest, Palindromic numbers beyond base 10

MAPLE

N:= 11: # to get all terms with up to N decimal digits

qpali:= proc(k, b) local L; L:= convert(k, base, b); if L = ListTools:-Reverse(L) then k else NULL fi end proc:

digrev:= proc(k, b) local L, n; L:= convert(k, base, b); n:= nops(L); add(L[i]*b^(n-i), i=1..n); end proc:

Res:= $0..9:

for d from 2 to N do

  if d::even then

    m:= d/2;

    Res:= Res, seq(qpali(n*10^m + digrev(n, 10), 11), n=10^(m-1)..10^m-1);

  else

    m:= (d-1)/2;

    Res:= Res, seq(seq(qpali(n*10^(m+1)+y*10^m+digrev(n, 10), 11), y=0..9), n=10^(m-1)..10^m-1);

  fi

od:

Res;  # Robert Israel, Nov 23 2014

MATHEMATICA

NextPalindrome[n_] := Block[{l = Floor[ Log[10, n] + 1], idn = IntegerDigits[n]}, If[ Union[idn] == {9}, Return[n + 2], If[l < 2, Return[n + 1], If[ FromDigits[ Reverse[ Take[idn, Ceiling[l/2]] ]] FromDigits[ Take[idn, -Ceiling[l/2]]], FromDigits[ Join[ Take[idn, Ceiling[l/2]], Reverse[ Take[idn, Floor[l/2]] ]]], idfhn = FromDigits[ Take[idn, Ceiling[l/2]]] + 1; idp = FromDigits[ Join[ IntegerDigits[idfhn], Drop[ Reverse[ IntegerDigits[idfhn]], Mod[l, 2]] ]]] ]]]; palQ[n_Integer, base_Integer] := Block[{idn = IntegerDigits[n, base]}, idn == Reverse[idn]]; l = {0}; a = 0; Do[a = NextPalindrome[a]; If[ palQ[a, 12], AppendTo[l, a]], {n, 100000}]; l (* Robert G. Wilson v, Sep 30 2004 *)

b1=10; b2=11; lst={}; Do[d1=IntegerDigits[n, b1]; d2=IntegerDigits[n, b2]; If[d1==Reverse[d1]&&d2==Reverse[d2], AppendTo[lst, n]], {n, 0, 10000000}]; lst (* Vincenzo Librandi, Nov 23 2014 *)

PROG

(MAGMA) [n: n in [0..5000000] | Intseq(n) eq Reverse(Intseq(n))and Intseq(n, 11) eq Reverse(Intseq(n, 11))]; // Vincenzo Librandi, Nov 23 2014

CROSSREFS

Cf. A007632, A007633, A029961, A029962, A029963, A029964, A029804, A029965, A029967, A029968, A029969, A029970, A029731, A097855, A099165.

Sequence in context: A217555 A137667 A117954 * A219324 A085134 A229761

Adjacent sequences:  A029963 A029964 A029965 * A029967 A029968 A029969

KEYWORD

nonn,base

AUTHOR

Patrick De Geest

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified March 29 18:39 EDT 2017. Contains 284273 sequences.