login
A029958
Numbers that are palindromic in base 13.
8
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 28, 42, 56, 70, 84, 98, 112, 126, 140, 154, 168, 170, 183, 196, 209, 222, 235, 248, 261, 274, 287, 300, 313, 326, 340, 353, 366, 379, 392, 405, 418, 431, 444, 457, 470, 483, 496, 510, 523, 536, 549, 562
OFFSET
1,3
COMMENTS
Cilleruelo, Luca, & Baxter prove that this sequence is an additive basis of order (exactly) 3. - Charles R Greathouse IV, May 04 2020
LINKS
Javier Cilleruelo, Florian Luca and Lewis Baxter, Every positive integer is a sum of three palindromes, Mathematics of Computation, Vol. 87, No. 314 (2018), pp. 3023-3055, arXiv preprint, arXiv:1602.06208 [math.NT], 2017.
Phakhinkon Phunphayap and Prapanpong Pongsriiam, Estimates for the Reciprocal Sum of b-adic Palindromes, 2019.
FORMULA
Sum_{n>=2} 1/a(n) = 3.55686013... (Phunphayap and Pongsriiam, 2019). - Amiram Eldar, Oct 17 2020
MATHEMATICA
f[n_, b_]:=Module[{i=IntegerDigits[n, b]}, i==Reverse[i]]; lst={}; Do[If[f[n, 13], AppendTo[lst, n]], {n, 7!}]; lst (* Vladimir Joseph Stephan Orlovsky, Jul 08 2009 *)
Select[Range[0, 600], IntegerDigits[#, 13]==Reverse[IntegerDigits[#, 13]]&] (* Harvey P. Dale, Nov 16 2022 *)
PROG
(PARI) isok(n) = my(d=digits(n, 13)); d == Vecrev(d); \\ Michel Marcus, May 13 2017
(Python)
from sympy import integer_log
from gmpy2 import digits
def A029958(n):
if n == 1: return 0
y = 13*(x:=13**integer_log(n>>1, 13)[0])
return int((c:=n-x)*x+int(digits(c, 13)[-2::-1]or'0', 13) if n<x+y else (c:=n-y)*y+int(digits(c, 13)[-1::-1]or'0', 13)) # Chai Wah Wu, Jun 14 2024
CROSSREFS
Palindromes in bases 2 through 12: A006995, A014190, A014192, A029952, A029953, A029954, A029803, A029955, A002113, A029956, A029957.
Sequence in context: A048310 A043716 A296750 * A297280 A048324 A048337
KEYWORD
nonn,base,easy
STATUS
approved