login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A029941 Number of symmetric types of (4,2n)-hypergraphs under action of complementing group C(4,2). 1
1, 15, 50, 225, 590, 1485, 3130, 6435, 11931, 21450, 36220, 59670, 94140, 145350, 217500, 319770, 458981, 648945, 900350, 1233375, 1663850, 2220075, 2924870, 3817125, 4928511, 6310980, 8007640, 10086780, 12605560, 15651900, 19300440, 23662980, 28835081 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The first g.f. gives a 0 between each two terms of the sequence - Colin Barker, Jul 12 2013

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (4,-4,-4,11,-8,0,8,-10,0,8,0,-10,8,0,-8,11,-4,-4,4,-1).

FORMULA

G.f.: (30/(1-x^2)^8-70/(1-x^4)^4+120/(1-x^8)^2-64/(1-x^16))/16.

G.f.: (9*x^12 -21*x^11 +26*x^10 +121*x^9 -149*x^8 +132*x^7 +20*x^6 +68*x^5 -61*x^4 +89*x^3 -6*x^2 +11*x +1) / ((x-1)^8 *(x+1)^4 *(x^2+1)^2 *(x^4+1)). - Colin Barker, Jul 12 2013

MATHEMATICA

CoefficientList[Series[(9 x^12 - 21 x^11 + 26 x^10 + 121 x^9 - 149 x^8 + 132 x^7 + 20 x^6 + 68 x^5 - 61 x^4 + 89 x^3 - 6 x^2 + 11 x + 1)/((x - 1)^8 (x + 1)^4 (x^2 + 1)^2 (x^4 + 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Oct 19 2013 *)

CROSSREFS

Cf. A051502.

Sequence in context: A134742 A318084 A191746 * A278909 A194851 A075928

Adjacent sequences:  A029938 A029939 A029940 * A029942 A029943 A029944

KEYWORD

nonn,easy

AUTHOR

Vladeta Jovovic, Jul 13 2000

EXTENSIONS

More terms from James A. Sellers, Aug 08 2000

More terms from Colin Barker, Jul 12 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 21 22:47 EDT 2019. Contains 328315 sequences. (Running on oeis4.)