login
h(n), where strategic move on g(n) X 3 rectangle in Chomp is (h(n),2). Conjectured to be complementary to r(n), see A029905.
3

%I #12 Apr 29 2022 04:32:55

%S 1,3,4,6,8,10,12,13,15,16,18,20,21,23,25,27,29,30,32,33,35,37,39,41,

%T 43,44,46,47,49,50,52,54,55,57,59,61,63,64,66,68,70,71,73,75,76,78,80,

%U 81,83,85,87,89,90,92,93,95,96,98,100,102,103,105,107,109,111

%N h(n), where strategic move on g(n) X 3 rectangle in Chomp is (h(n),2). Conjectured to be complementary to r(n), see A029905.

%D E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways vol. 2, 598-600.

%D M. Gardner, Mathematical Games, Sci. Amer. (Jan, May 1973).

%H A. E. Brouwer, <a href="http://www.win.tue.nl/~aeb/games/chomp.html">Chomp</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Chomp">Chomp</a>

%Y See also A029899 - A029905.

%K nonn

%O 0,2

%A _Fred Lunnon_

%E More terms from _Sean A. Irvine_, Mar 08 2020