login
Number of graphical partitions with up to n parts (?).
1

%I #18 Apr 18 2024 04:28:03

%S 1,2,4,10,24,68,198,656,2112

%N Number of graphical partitions with up to n parts (?).

%D R. A. Brualdi, H. J. Ryser, Combinatorial Matrix Theory, Cambridge Univ. Press, 1992.

%H T. M. Barnes and C. D. Savage, <a href="https://doi.org/10.37236/1205">A recurrence for counting graphical partitions</a>, Electronic J. Combinatorics, 2 (1995).

%H <a href="/index/Gra#graph_part">Index entries for sequences related to graphical partitions</a>

%F Calculated using Cor. 6.3.3, Th. 6.3.6, Cor. 6.2.5 of Brualdi-Ryser.

%Y Cf. A000569, A004250, A004251, A029889.

%Y A possible duplicate of A028506.

%K nonn,more,obsc

%O 1,2

%A torsten.sillke(AT)lhsystems.com