login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A029889 Number of graphical partitions (degree-vectors for graphs with n vertices, allowing self-loops which count as degree 1; or possible ordered row-sum vectors for a symmetric 0-1 matrix). 11
2, 5, 14, 43, 140, 476, 1664, 5939, 21518, 78876, 291784, 1087441, 4077662, 15369327, 58184110, 221104527, 842990294, 3223339023 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

REFERENCES

R. A. Brualdi, H. J. Ryser, Combinatorial Matrix Theory, Cambridge Univ. Press, 1992.

LINKS

Table of n, a(n) for n=1..18.

T. M. Barnes and C. D. Savage, A recurrence for counting graphical partitions, Electronic J. Combinatorics, 2 (1995)

Index entries for sequences related to graphical partitions

FORMULA

Calculated using Cor. 6.3.3, Th. 6.3.6, Cor. 6.2.5 of Brualdi-Ryser.

CROSSREFS

Cf. A000569, A004250, A004251.

Sequence in context: A276989 A272461 A213264 * A307787 A221586 A258312

Adjacent sequences:  A029886 A029887 A029888 * A029890 A029891 A029892

KEYWORD

nonn

AUTHOR

TORSTEN.SILLKE(AT)LHSYSTEMS.COM

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 20 08:05 EST 2020. Contains 332069 sequences. (Running on oeis4.)