login
Inverse Euler transform of {A001285(0), A001285(1), ...} where A001285(n) is Thue-Morse sequence,
2

%I #24 Jun 29 2018 13:40:58

%S 1,1,0,-2,1,0,-1,1,2,-3,-2,5,1,-6,1,8,-6,-10,14,7,-25,8,36,-34,-41,72,

%T 25,-125,29,187,-150,-216,361,137,-657,159,977,-810,-1135,1937,752,

%U -3558,792,5361,-4327,-6318,10641,4281,-19848,4286

%N Inverse Euler transform of {A001285(0), A001285(1), ...} where A001285(n) is Thue-Morse sequence,

%H Seiichi Manyama, <a href="/A029878/b029878.txt">Table of n, a(n) for n = 1..5000</a>

%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/EulerTransform.html">Euler Transform</a>

%F Product_{k>=1} (1-x^k)^(-a(k)) = 1 + Sum_{k>=1} A001285(k-1)*x^k. - _Seiichi Manyama_, Jun 25 2018

%e (1-x)^(-1)*(1-x^2)^(-1)*(1-x^4)^2*(1-x^5)^(-1)* ... = 1 + x + 2*x^2 + 2*x^3 + x^4 + 2*x^5 + ... .

%Y Cf. A001285, A316149.

%K sign

%O 1,4

%A _N. J. A. Sloane_

%E Name edited by _Seiichi Manyama_, Jun 25 2018