%I #24 Apr 28 2024 05:00:23
%S 2,9,36,150,672,3185,15688,79326,408710,2135771,11285280,60168394,
%T 323185688,1746853245,9492648592,51824157994,284078305566,
%U 1562777946663
%N Low temperature series for spin-1/2 Ising specific heat on 2D square lattice, divided by 8.
%D S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 391-406.
%H G. A. Baker, <a href="https://doi.org/10.1103/PhysRev.129.99">Further application of the Padé approximant method to the Ising and Heisenberg models</a>, Phys. Rev. 129 (1963) 99-102.
%H I. G. Enting, A, J. Guttmann and I. Jensen, <a href="https://arxiv.org/abs/hep-lat/9410005">Low-Temperature Series Expansions for the Spin-1 Ising Model</a>, arXiv:hep-lat/9410005, 1994; J. Phys. A. 27 (1994) 6987-7006.
%H Steven R. Finch, <a href="http://www.people.fas.harvard.edu/~sfinch/constant/ising/ising.html">Lenz-Ising Constants</a> [broken link]
%H Steven R. Finch, <a href="http://web.archive.org/web/20010207201511/http://www.mathsoft.com:80/asolve/constant/ising/ising.html">Lenz-Ising Constants</a> [From the Wayback Machine]
%H <a href="/index/Sp#specific_heat">Index entries for sequences related to specific heat</a>
%F a(n) ~ (1 + sqrt(2))^(2*n+4) / (4*Pi*n). - _Vaclav Kotesovec_, Apr 28 2024
%Y Cf. A029872.
%K nonn,more
%O 0,1
%A _Steven Finch_