login
G:=1/product((1-x^(3k-2))*(1-x^(3k-1))^2*(1-x^(3k))^3,k=1..infinity).
0

%I #7 Mar 30 2012 17:35:47

%S 1,1,3,6,10,18,33,50,85,135,206,319,488,714,1068,1559,2241,3226,4598,

%T 6448,9076,12622,17415,23982,32797,44496,60311,81171,108698,145178,

%U 192947,255189,336804,442434,579093

%N G:=1/product((1-x^(3k-2))*(1-x^(3k-1))^2*(1-x^(3k))^3,k=1..infinity).

%C Number of partitions of n if there are two kinds of 2,5,8,11,... and three kinds of 3,6,9,12,... . E.g. a(4)=10 because we have 4, 3+1, 3'+1, 3"+1, 2+2, 2+2', 2'+2', 2+1+1, 2'+1+1, 1+1+1+1. - _Emeric Deutsch_, Mar 23 2005

%C Euler transform of period 3 sequence [1,2,3,1,2,3,...].

%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>

%K nonn

%O 0,3

%A _N. J. A. Sloane_.

%E More terms from _Emeric Deutsch_, Mar 23 2005