login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A029862 Expansion of q^(5/24) / (eta(q) * eta(q^2)^2) in powers of q 2
1, 1, 4, 5, 14, 18, 41, 54, 109, 145, 267, 357, 618, 826, 1359, 1815, 2872, 3824, 5859, 7774, 11600, 15329, 22362, 29425, 42113, 55167, 77648, 101267, 140479, 182395, 249789, 322906, 437199, 562755, 754171, 966713, 1283630, 1638716, 2157763 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Number of partitions of n where there are 3 kinds of even parts. - Ilya Gutkovskiy, Jan 17 2018

Also the number of non-isomorphic multiset partitions of weight n using singletons or pairs where no vertex appears more than twice. - Gus Wiseman, Oct 18 2018 (Proved by Andrew Howroyd, Oct 26 2018)

LINKS

Table of n, a(n) for n=0..38.

N. J. A. Sloane, Transforms

FORMULA

Euler transform of period 2 sequence [ 1, 3, ...].

G.f.: Product_{k>0} 1 / ((1 - x^(2*k))^3 * (1 - x^(2*k-1))). - Michael Somos, Mar 23 2003

a(n) ~ exp(2*Pi*sqrt(n/3))/(6*sqrt(2)*n^(3/2)). - Vaclav Kotesovec, Sep 07 2015

EXAMPLE

G.f. = 1 + x + 4*x^2 + 5*x^3 + 14*x^4 + 18*x^5 + 41*x^6 + 54*x^7 + 109*x^8 + ...

G.f. = q^-5 + q^19 + 4*q^43 + 5*q^67 + 14*q^91 + 18*q^115 + 41*q^139 + ...

From Gus Wiseman, Oct 27 2018: (Start)

Non-isomorphic representatives of the a(1) = 1 through a(5) = 18 multiset partitions using singletons or pairs where no vertex appears more than twice:

  {{1}}  {{1,1}}    {{1},{2,2}}    {{1,1},{2,2}}      {{1},{2,2},{3,3}}

         {{1,2}}    {{1},{2,3}}    {{1,2},{1,2}}      {{1},{2,3},{2,3}}

         {{1},{1}}  {{2},{1,2}}    {{1,2},{3,3}}      {{1},{2,3},{4,4}}

         {{1},{2}}  {{1},{2},{2}}  {{1,2},{3,4}}      {{1},{2,3},{4,5}}

                    {{1},{2},{3}}  {{1,3},{2,3}}      {{1},{2,4},{3,4}}

                                   {{1},{1},{2,2}}    {{2},{1,2},{3,3}}

                                   {{1},{1},{2,3}}    {{2},{1,3},{2,3}}

                                   {{1},{2},{1,2}}    {{4},{1,2},{3,4}}

                                   {{1},{2},{3,3}}    {{1},{1},{3},{2,3}}

                                   {{1},{2},{3,4}}    {{1},{2},{2},{3,3}}

                                   {{1},{3},{2,3}}    {{1},{2},{2},{3,4}}

                                   {{1},{1},{2},{2}}  {{1},{2},{3},{2,3}}

                                   {{1},{2},{3},{3}}  {{1},{2},{3},{4,4}}

                                   {{1},{2},{3},{4}}  {{1},{2},{3},{4,5}}

                                                      {{1},{2},{4},{3,4}}

                                                      {{1},{2},{2},{3},{3}}

                                                      {{1},{2},{3},{4},{4}}

                                                      {{1},{2},{3},{4},{5}}

(End)

MATHEMATICA

nmax = 40; CoefficientList[Series[Product[1 / ((1 - x^(2*k))^3 * (1 - x^(2*k-1))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 07 2015 *)

QP = QPochhammer; s = 1/(QP[q]*QP[q^2]^2) + O[q]^40; CoefficientList[s, q] (* Jean-Fran├žois Alcover, Nov 25 2015 *)

PROG

(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( 1 / (eta(x + A) * eta(x^2 + A)^2), n))};

CROSSREFS

Cf. A001358, A007716, A007717, A037143, A320462, A320655, A320663, A320665.

Sequence in context: A222364 A222372 A302348 * A092432 A041669 A300278

Adjacent sequences:  A029859 A029860 A029861 * A029863 A029864 A029865

KEYWORD

nonn

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 21 06:58 EDT 2019. Contains 328292 sequences. (Running on oeis4.)