%I
%S 0,1,1,0,2,0,2,0,0,0,2,0,3,0,0,0,3,0,3,0,0,0,3,0,0,0,0,0,3,0,3,0,0,0,
%T 0,0,4,0,0,0,4,0,4,0,0,0,4,0,0,0,0,0,4,0,0,0,0,0,4,0,4,0,0,0,0,0,4,0,
%U 0,0,4,0,4,0,0,0,0,0,4,0,0,0,4,0,0,0,0,0,4,0,0,0,0,0,0,0,5,0,0,0,5,0,5,0,0,0,5,0,5,0,0,0,5,0,0
%N A discrete version of the Mangoldt function: if n is prime then round(log(n)) else 0.
%C The real Mangoldt function Lambda(n) is equal to log(n) if n is prime else 0.
%D T. M. Apostol, Introduction to Analytic Number Theory, SpringerVerlag, 1976, page 32.
%D P. Ribenboim, Algebraic Numbers, p. 44.
%H Antti Karttunen, <a href="/A029833/b029833.txt">Table of n, a(n) for n = 1..65539</a>
%o (PARI) A029833(n) = if(!isprime(n),0,round(log(n))); \\ _Antti Karttunen_, Feb 06 2019
%Y Cf. A029832, A029834, A053821.
%K nonn,easy
%O 1,5
%A _N. J. A. Sloane_.
%E More terms from _Antti Karttunen_, Feb 06 2019
