|
|
A029833
|
|
A discrete version of the Mangoldt function: if n is prime then round(log(n)) else 0.
|
|
5
|
|
|
0, 1, 1, 0, 2, 0, 2, 0, 0, 0, 2, 0, 3, 0, 0, 0, 3, 0, 3, 0, 0, 0, 3, 0, 0, 0, 0, 0, 3, 0, 3, 0, 0, 0, 0, 0, 4, 0, 0, 0, 4, 0, 4, 0, 0, 0, 4, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 4, 0, 4, 0, 0, 0, 0, 0, 4, 0, 0, 0, 4, 0, 4, 0, 0, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 5, 0, 5, 0, 0, 0, 5, 0, 5, 0, 0, 0, 5, 0, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,5
|
|
COMMENTS
|
The real Mangoldt function Lambda(n) is equal to log(n) if n is prime else 0.
|
|
REFERENCES
|
T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 32.
P. Ribenboim, Algebraic Numbers, p. 44.
|
|
LINKS
|
Antti Karttunen, Table of n, a(n) for n = 1..65539
|
|
MATHEMATICA
|
Table[If[PrimeQ[n], Round[Log[n]], 0], {n, 200}] (* Harvey P. Dale, Nov 25 2020 *)
|
|
PROG
|
(PARI) A029833(n) = if(!isprime(n), 0, round(log(n))); \\ Antti Karttunen, Feb 06 2019
|
|
CROSSREFS
|
Cf. A029832, A029834, A053821.
Sequence in context: A029834 A318715 A202385 * A050948 A282695 A292936
Adjacent sequences: A029830 A029831 A029832 * A029834 A029835 A029836
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
N. J. A. Sloane.
|
|
EXTENSIONS
|
More terms from Antti Karttunen, Feb 06 2019
|
|
STATUS
|
approved
|
|
|
|