login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A029826 Expansion of 1/(x^10+x^9-x^7-x^6-x^5-x^4-x^3+x+1) (inverse of Salem polynomial). 34
1, -1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 2, 1, 2, 3, 2, 4, 3, 5, 5, 6, 8, 8, 10, 12, 14, 16, 20, 22, 27, 31, 37, 44, 50, 61, 70, 83, 98, 115, 135, 159, 187, 220, 259, 304, 359, 420, 496, 583, 685, 807, 948, 1116, 1312, 1544 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,14

COMMENTS

The root 1.1762808182599175065440703384740350... is the smallest known Salem number (A073011).

LINKS

Simon Plouffe, Table of n, a(n) for n = 0..2998

Leonard Lewin, Structural Properties of Polylogarithms, AMS #37. p. 365, 1991.

Index entries for linear recurrences with constant coefficients, signature (-1,0,1,1,1,1,1,0,-1,-1).

FORMULA

a(n) = -a(n-1) + a(n-3) + a(n-4) + a(n-5) + a(n-6) + a(n-7) - a(n-9) - a(n-10). - Roger L. Bagula and Gary W. Adamson, Oct 23 2008

MATHEMATICA

LinearRecurrence[{-1, 0, 1, 1, 1, 1, 1, 0, -1, -1}, {1, -1, 1, 0, 0, 1, 0, 1, 0, 1}, 100] (* G. C. Greubel, May 07 2018 *)

PROG

(PARI) Vec(1/(x^10+x^9-x^7-x^6-x^5-x^4-x^3+x+1)+O(x^66)) \\ Joerg Arndt, May 01 2018

(MAGMA) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(x^10+x^9-x^7-x^6-x^5-x^4-x^3+x+1))); / G. C. Greubel, May 07 2018

CROSSREFS

Cf. A073011, A125950.

Sequence in context: A029201 A071283 A172986 * A192185 A246833 A213624

Adjacent sequences:  A029823 A029824 A029825 * A029827 A029828 A029829

KEYWORD

sign,easy

AUTHOR

Simon Plouffe

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 25 08:42 EST 2020. Contains 332221 sequences. (Running on oeis4.)