%I #16 Jun 10 2021 11:49:24
%S 0,2,3,7,8,10,12,15,18,23,27,28,32,35,40,42,43,47,48,50,58,60,63,67,
%T 72,75,82,83,87,90,92,98,103,107,108,112,115,122,123,127,128,135,138,
%U 140,147,160,162,163,167,168,172,175,178,183,188,192,200,202,203,207,210
%N Numbers of form 2x^2 + 2xy + 3y^2.
%C Numbers represented by quadratic form with Gram matrix [ 2, 1; 1, 3 ].
%D H. Cohn, A second course in number theory, John Wiley & Sons, Inc., New York-London, 1962. see page 3.
%H N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)
%F List contains 0 and all positive n such that 2*A035170(n) = A028586(n) is nonzero. - _Michael Somos_, Oct 21 2006
%Y Cf. A028927.
%Y For primes see A106865.
%Y For the properly represented numbers see A344232.
%K nonn
%O 1,2
%A _N. J. A. Sloane_
%E More terms from Larry Reeves (larryr(AT)acm.org), Mar 29 2000