login
Q(sqrt(n)) has class number 3.
4

%I #16 May 13 2013 01:54:04

%S 79,142,223,229,254,257,321,326,359,443,469,473,659,733,761,839,934,

%T 993,1091,1101,1171,1223,1229,1257,1367,1373,1478,1489,1509,1523,1567,

%U 1627,1646,1787,1811,1847,1901,1907,1929,1957,1987,2021,2089,2099,2101,2143,2177,2207,2213

%N Q(sqrt(n)) has class number 3.

%H Charles R Greathouse IV, <a href="/A029703/b029703.txt">Table of n, a(n) for n = 1..10000</a>

%H <a href="/index/Qua#quadfield">Index entries for sequences related to quadratic fields</a>

%e 79 is in the sequence because Z[sqrt(79)] has class number 3.

%e Z[sqrt(82)] has class number 4 and therefore 82 is not in the sequence.

%t Select[Range[2000], SquareFreeQ[#] && NumberFieldClassNumber[Sqrt[#]] == 3 &] (* _Alonso del Arte_, Oct 17 2012 *)

%o (PARI)

%o A007947(n)={my(p); p=factor(n)[, 1]; prod(i=1, length(p), p[i]); }

%o { for (n=2, 10^4,

%o if ( n!=A007947(n), next() );

%o K = bnfinit(x^2 - n);

%o if ( K.cyc == [3], print1( n, ", ") );

%o ); }

%o /* _Joerg Arndt_, Oct 18 2012 */

%Y Cf. A003172, A029702, A029704-A029705, A218038-A218042.

%K nonn

%O 1,1

%A Paolo Dominici (pl.dm(AT)libero.it)

%E Missing initial term (79) added by _Alonso del Arte_, Oct 17 2012