login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A029651 Central elements of the (1,2)-Pascal triangle A029635. 10
1, 3, 9, 30, 105, 378, 1386, 5148, 19305, 72930, 277134, 1058148, 4056234, 15600900, 60174900, 232676280, 901620585, 3500409330, 13612702950, 53017895700, 206769793230, 807386811660, 3156148445580, 12350146091400, 48371405524650 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

If Y is a fixed 2-subset of a (2n+1)-set X then a(n) is the number of (n+1)-subsets of X intersecting Y. - Milan Janjic, Oct 28 2007

REFERENCES

V. N. Smith and L. Shapiro, Catalan numbers, Pascal's triangle and mutators, Congressus Numerant., 205 (2010), 187-197.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

C. Bean, M. Tannock and H. Ulfarsson, Pattern avoiding permutations and independent sets in graphs, arXiv:1512.08155 [math.CO], 2015.

Milan Janjic, Two Enumerative Functions

Mark C. Wilson, Asymptotics for generalized Riordan arrays. International Conference on Analysis of Algorithms DMTCS proc. AD. Vol. 323. 2005. (However, the asymptotics given there on p.328 for a(n) gives differing results for me. - Ralf Stephan, Dec 28 2013)

FORMULA

a(n) = 3 * binomial(2n-1, n) (n>0). - Len Smiley, Nov 03 2001

a(n) = 3*A001700(n-1), (n>1).

G.f.: (1+xC(x))/(1-2xC(x)), C(x) the g.f. of A000108. - Paul Barry, Dec 17 2004

a(n) = A003409(n), n>0. - R. J. Mathar, Oct 23 2008

a(n) = Sum_{k=0..n} A039599(n,k)*A000034(k). - Philippe Deléham, Oct 29 2008

a(n) = (3/2)*4^n*Gamma(1/2+n)/(sqrt(Pi)*Gamma(1+n))-0^n/2. - Peter Luschny, Dec 16 2015

a(n) ~ (3/2)*4^n*(1-(1/8)/n+(1/128)/n^2+(5/1024)/n^3-(21/32768)/n^4)/sqrt(n*Pi). - Peter Luschny, Dec 16 2015

a(n) = 2^(1-n)*Sum_{k=0..n}(binomial(k+n,k)*binomial(2*n-1,n-k))), n>0, a(0)=1. - Vladimir Kruchinin, Nov 23 2016

E.g.f.: (3*exp(2*x)*BesselI(0,2*x) - 1)/2. - Ilya Gutkovskiy, Nov 23 2016

MAPLE

a := n -> (3/2)*4^n*GAMMA(1/2+n)/(sqrt(Pi)*GAMMA(1+n))-0^n/2;

seq(simplify(a(n)), n=0..24); # Peter Luschny, Dec 16 2015

MATHEMATICA

Join[{1}, Table[3*Binomial[2n-1, n], {n, 30}]] (* Harvey P. Dale, Aug 11 2015 *)

PROG

(PARI) concat([1], for(n=1, 50, print1(3*binomial(2*n-1, n), ", "))) \\ G. C. Greubel, Jan 23 2017

CROSSREFS

Cf. A001700.

Sequence in context: A119372 A145268 A148956 * A003409 A181933 A148957

Adjacent sequences:  A029648 A029649 A029650 * A029652 A029653 A029654

KEYWORD

nonn

AUTHOR

Mohammad K. Azarian

EXTENSIONS

More terms from David W. Wilson

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 23 13:32 EST 2018. Contains 299581 sequences. (Running on oeis4.)