The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A029571 Number of permutations of an n-set containing a 4-cycle. 3
 0, 0, 0, 0, 6, 30, 180, 1260, 8820, 79380, 793800, 8731800, 106029000, 1378377000, 19297278000, 289459170000, 4627941318000, 78675002406000, 1416150043308000, 26906850822852000, 538156815464268000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 LINKS Robert Israel, Table of n, a(n) for n = 0..449 FORMULA a(n) = n! * (1 - sum(k=0..floor(n/4), (-1)^k/(k!*4^k) ) ). a(n)/n! is asymptotic to 1-e^(-1/4) = 1 - A092616. a(n) = n! (1 - Gamma(floor(n/4)+1,-1/4)*exp(1/4)/(floor(n/4))!). - Robert Israel, Dec 07 2016 E.g.f.: (1-exp(-x^4/4))/(1-x). - Alois P. Heinz, Oct 11 2017 MAPLE L:= [seq( 1 - add((-1)^k/(k!*4^k), k=0..m), m=0..10)]: seq(seq((4*m+j)!*L[m+1], j=0..3), m=0..10); # Robert Israel, Dec 07 2016 MATHEMATICA a[n_] := n! (1 - Sum[(-1)^k/(k! 4^k), {k, 0, Floor[n/4]}]); Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Mar 19 2019 *) PROG (PARI) a(n)=n! * (1 - sum(k=0, floor(n/4), (-1)^k/(k!*4^k) ) ); \\ Joerg Arndt, Aug 08 2013 CROSSREFS Column k=4 of A293211. Sequence in context: A001473 A334288 A063888 * A259276 A109501 A239488 Adjacent sequences:  A029568 A029569 A029570 * A029572 A029573 A029574 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 1 07:14 EST 2020. Contains 338833 sequences. (Running on oeis4.)