login
A029442
Expansion of 1/((1-x^8)(1-x^9)(1-x^10)(1-x^11)).
0
1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 2, 2, 2, 1, 1, 0, 1, 1, 2, 3, 3, 3, 3, 2, 2, 2, 2, 3, 4, 4, 5, 4, 5, 4, 4, 4, 5, 5, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 9, 9, 10, 10, 11, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 21, 21, 22, 22, 23, 23, 24
OFFSET
0,19
COMMENTS
Gives the number of ways one can write n as the sum of 8, 9, 10 and 11 if the order is irrelevant. - Stefan Steinerberger, Apr 09 2006
LINKS
Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, -1, -1, -2, -1, -1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, -1).
FORMULA
G.f.: 1/((1-x^8)*(1-x^9)*(1-x^10)*(1-x^11)).
a(n) = a(n-8) + a(n-9) + a(n-10) + a(n-11) - a(n-17) - a(n-18) - 2*a(n-19) - a(n-20) - a(n-21) + a(n-27) + a(n-28) + a(n-29) + a(n-30) - a(n-38). - Wesley Ivan Hurt, Apr 18 2023
MATHEMATICA
CoefficientList[Series[1/((1-x^8)(1-x^9)(1-x^10)(1-x^11)), {x, 0, 100}], x] (* Stefan Steinerberger, Apr 09 2006 *)
PROG
(PARI) Vec(1/((1-x^8)*(1-x^9)*(1-x^10)*(1-x^11)) + O(x^80)) \\ Jinyuan Wang, Mar 11 2020
CROSSREFS
Sequence in context: A358479 A288160 A275332 * A125917 A071468 A274886
KEYWORD
nonn
EXTENSIONS
More terms from Stefan Steinerberger, Apr 09 2006
STATUS
approved