login
Expansion of 1/((1-x^5)(1-x^7)(1-x^9)(1-x^12)).
0

%I #8 May 20 2021 15:42:25

%S 1,0,0,0,0,1,0,1,0,1,1,0,2,0,2,1,1,2,1,3,1,3,2,2,4,2,4,3,4,4,4,5,4,6,

%T 5,6,7,6,7,7,8,8,9,9,9,11,10,11,12,12,13,13,14,14,16,16,16,18,17,19,

%U 20,20,21,22,23,23,25,25,26

%N Expansion of 1/((1-x^5)(1-x^7)(1-x^9)(1-x^12)).

%H <a href="/index/Rec#order_33">Index entries for linear recurrences with constant coefficients</a>, signature (0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, -1, 0, -1, -1, 0, -1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, -1).

%F G.f.: 1/((1-x^5)*(1-x^7)*(1-x^9)*(1-x^12)).

%F a(n) = a(n-5)+a(n-7)+a(n-9)-a(n-14)-a(n-16)-a(n-17)-a(n-19)+a(n-24)+a(n-26)+a(n-28)-a(n-33). - _Wesley Ivan Hurt_, May 20 2021

%t CoefficientList[Series[1/((1-x^5)(1-x^7)(1-x^9)(1-x^12)), {x, 0, 100}], x] (* _Jinyuan Wang_, Mar 11 2020 *)

%K nonn,easy

%O 0,13

%A _N. J. A. Sloane_