login
Expansion of g.f. 1/((1 - x^5)*(1 - x^6)*(1 - x^9)*(1 - x^10)).
0

%I #14 Jun 20 2024 12:54:58

%S 1,0,0,0,0,1,1,0,0,1,2,1,1,0,1,3,2,1,2,2,4,3,2,2,4,5,4,4,4,5,8,5,5,6,

%T 7,9,9,7,8,10,12,10,11,10,12,16,14,13,15,15,19,18,17,17,21,23,22,22,

%U 22,24,30,26,26,28,30,34,34

%N Expansion of g.f. 1/((1 - x^5)*(1 - x^6)*(1 - x^9)*(1 - x^10)).

%C a(n) is the number of partitions of n into parts 5, 6, 9, and 10. - _Stefano Spezia_, Jun 14 2023

%H <a href="/index/Rec#order_30">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,1,1,0,0,1,1,-1,0,0,-1,-2,-1,0,0,-1,1,1,0,0,1,1,0,0,0,0,-1).

%t CoefficientList[Series[1/((1-x^5)(1-x^6)(1-x^9)(1-x^10)), {x, 0, 100}], x] (* _Jinyuan Wang_, Mar 11 2020 *)

%t LinearRecurrence[{0,0,0,0,1,1,0,0,1,1,-1,0,0,-1,-2,-1,0,0,-1,1,1,0,0,1,1,0,0,0,0,-1},{1,0,0,0,0,1,1,0,0,1,2,1,1,0,1,3,2,1,2,2,4,3,2,2,4,5,4,4,4,5},80] (* _Harvey P. Dale_, Jun 20 2024 *)

%K nonn,easy

%O 0,11

%A _N. J. A. Sloane_