login
A029350
Expansion of 1/((1-x^4)(1-x^6)(1-x^7)(1-x^11)).
0
1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 2, 2, 1, 2, 2, 2, 2, 4, 3, 3, 3, 5, 4, 5, 5, 6, 5, 7, 7, 8, 7, 9, 9, 10, 10, 12, 11, 12, 13, 15, 14, 16, 16, 18, 17, 20, 20, 22, 21, 24, 24, 26, 26, 29, 29, 31, 31, 34, 34, 37, 37, 40, 40, 43, 43
OFFSET
0,12
LINKS
Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 1, 0, 1, 1, 0, 0, -1, 0, 0, -1, 0, -1, 0, 0, -1, 0, 0, 1, 1, 0, 1, 0, 0, 0, -1).
FORMULA
G.f.: 1/((1-x^4)*(1-x^6)*(1-x^7)*(1-x^11)).
a(n) = a(n-4) + a(n-6) + a(n-7) - a(n-10) - a(n-13) - a(n-15) - a(n-18) + a(n-21) + a(n-22) + a(n-24) - a(n-28). - Wesley Ivan Hurt, Aug 19 2022
MATHEMATICA
CoefficientList[Series[1/((1-x^4)(1-x^6)(1-x^7)(1-x^11)), {x, 0, 100}], x] (* Jinyuan Wang, Mar 11 2020 *)
CROSSREFS
Sequence in context: A029405 A339383 A198260 * A166597 A375325 A302490
KEYWORD
nonn,easy
STATUS
approved