login
Expansion of 1/((1-x^3)(1-x^5)(1-x^10)(1-x^11)).
1

%I #19 Jun 13 2015 00:49:10

%S 1,0,0,1,0,1,1,0,1,1,2,2,1,2,2,3,3,2,3,3,5,5,4,5,5,7,7,6,7,7,10,10,9,

%T 11,10,13,14,12,14,14,17,18,17,19,19,22,23,22,24,24,28,29,28,31,31,35,

%U 36,35,38,38,43,44,43,47,47

%N Expansion of 1/((1-x^3)(1-x^5)(1-x^10)(1-x^11)).

%C Number of partitions of n into parts 3, 5, 10, and 11. - _Vincenzo Librandi_, Jun 04 2014

%H Vincenzo Librandi, <a href="/A029289/b029289.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,1,0,1,0,0,-1,0,1,1,0,-1,-1,-1,-1,0,1,1,0,-1,0,0,1,0,1,0,0,-1).

%t CoefficientList[Series[1/((1-x^3)(1-x^5)(1-x^10)(1-x^11)),{x,0,70}],x] (* _Harvey P. Dale_, Dec 12 2012 *)

%K nonn,easy

%O 0,11

%A _N. J. A. Sloane_.