login
Expansion of 1/((1-x^3)(1-x^5)(1-x^9)(1-x^11)).
1

%I #12 Jul 03 2021 19:38:22

%S 1,0,0,1,0,1,1,0,1,2,1,2,2,1,3,3,2,3,4,3,5,5,4,6,6,6,7,8,7,9,10,9,11,

%T 12,11,13,15,13,16,17,16,19,20,19,22,24,22,26,27,26,30,31,30,34,36,35,

%U 39,40,40,44,46,45,49,52,51

%N Expansion of 1/((1-x^3)(1-x^5)(1-x^9)(1-x^11)).

%C Number of partitions of n into parts 3, 5, 9, and 11. - _Vincenzo Librandi_, Jun 04 2014

%H Vincenzo Librandi, <a href="/A029287/b029287.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_28">Index entries for linear recurrences with constant coefficients</a>, signature (0, 0, 1, 0, 1, 0, 0, -1, 1, 0, 1, -1, 0, -2, 0, -1, 1, 0, 1, -1, 0, 0, 1, 0, 1, 0, 0, -1).

%t CoefficientList[Series[1/((1 - x^3) (1 - x^5) (1 - x^9) (1 - x^11)), {x, 0, 100}], x] (* _Vincenzo Librandi_, Jun 04 2014 *)

%t LinearRecurrence[{0,0,1,0,1,0,0,-1,1,0,1,-1,0,-2,0,-1,1,0,1,-1,0,0,1,0,1,0,0,-1},{1,0,0,1,0,1,1,0,1,2,1,2,2,1,3,3,2,3,4,3,5,5,4,6,6,6,7,8},70] (* _Harvey P. Dale_, Jul 03 2021 *)

%o (PARI) Vec(1/((1-x^3)*(1-x^5)*(1-x^9)*(1-x^11)) + O(x^80)) \\ _Jinyuan Wang_, Mar 11 2020

%K nonn,easy

%O 0,10

%A _N. J. A. Sloane_