login
Expansion of 1/((1-x^3)(1-x^4)(1-x^7)(1-x^11)).
1

%I #10 Mar 12 2020 07:34:37

%S 1,0,0,1,1,0,1,2,1,1,2,3,2,2,4,4,3,4,6,5,5,7,8,7,8,10,10,10,12,13,13,

%T 14,16,17,17,19,21,21,22,25,26,26,29,31,32,33,36,38,39,41,44,46,47,50,

%U 53,55,57,60,63,65,68,71,74

%N Expansion of 1/((1-x^3)(1-x^4)(1-x^7)(1-x^11)).

%C Number of partitions of n into parts 3, 4, 7, and 11. - _Vincenzo Librandi_, Jun 03 2014

%H Vincenzo Librandi, <a href="/A029260/b029260.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_25">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,1,1,0,0,0,0,0,-1,0,0,0,0,-1,0,0,0,0,0,1,1,0,0,-1).

%t CoefficientList[Series[1/((1 - x^3) (1 - x^4) (1 - x^7) (1 - x^11)), {x, 0, 100}], x] (* _Vincenzo Librandi_, Jun 03 2014 *)

%o (PARI) Vec(1/((1-x^3)*(1-x^4)*(1-x^7)*(1-x^11)) + O(x^80)) \\ _Jinyuan Wang_, Mar 12 2020

%K nonn,easy

%O 0,8

%A _N. J. A. Sloane_