Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #13 Dec 05 2022 17:04:25
%S 1,0,1,0,1,0,2,1,2,1,2,2,3,3,4,3,4,4,6,5,7,6,8,7,10,9,11,10,13,12,15,
%T 14,17,16,19,19,22,21,24,24,27,27,31,30,34,33,38,37,42,41,46,45,50,50,
%U 55,55,60,60,65,65,71,71,77
%N Expansion of 1/((1-x^2)*(1-x^6)*(1-x^7)*(1-x^11)).
%C Number of partitions of n into parts 2, 6, 7, and 11. - _Joerg Arndt_, Jun 02 2014
%H Vincenzo Librandi, <a href="/A029217/b029217.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_26">Index entries for linear recurrences with constant coefficients</a>, signature (0,1,0,0,0,1,1,-1,-1,0,1,0,-2,0,1,0,-1,-1,1,1,0,0,0,1,0,-1).
%t CoefficientList[Series[1/((1 - x^2) (1 - x^6) (1 - x^7) (1 - x^11)), {x, 0, 100}], x] (* _Vincenzo Librandi_, Jun 02 2014 *)
%t LinearRecurrence[{0,1,0,0,0,1,1,-1,-1,0,1,0,-2,0,1,0,-1,-1,1,1,0,0,0,1,0,-1},{1,0,1,0,1,0,2,1,2,1,2,2,3,3,4,3,4,4,6,5,7,6,8,7,10,9},70] (* _Harvey P. Dale_, Dec 05 2022 *)
%o (PARI) Vec(1/((1-x^2)*(1-x^6)*(1-x^7)*(1-x^11)) + O(x^80)) \\ _Jinyuan Wang_, Mar 15 2020
%K nonn,easy
%O 0,7
%A _N. J. A. Sloane_