login
Expansion of 1/((1-x^2)*(1-x^5)*(1-x^7)*(1-x^11)).
1

%I #13 Sep 19 2022 13:09:26

%S 1,0,1,0,1,1,1,2,1,2,2,3,3,3,4,4,5,5,6,6,7,8,9,9,10,11,12,13,14,15,16,

%T 17,19,20,21,23,24,26,27,29,31,32,35,36,39,40,43,45,47,50,52,55,57,60,

%U 63,66,69,72,75,78,82,85

%N Expansion of 1/((1-x^2)*(1-x^5)*(1-x^7)*(1-x^11)).

%C Number of partitions of n into parts 2, 5, 7, and 11. - _Joerg Arndt_, Jun 02 2014

%H Vincenzo Librandi, <a href="/A029202/b029202.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_25">Index entries for linear recurrences with constant coefficients</a>, signature (0,1,0,0,1,0,0,0,-1,0,1,-1,-1,1,0,-1,0,0,0,1,0,0,1,0,-1).

%t CoefficientList[Series[1/((1 - x^2) (1 - x^5) (1 - x^7) (1 - x^11)), {x, 0, 100}], x] (* _Vincenzo Librandi_, Jun 02 2014 *)

%t LinearRecurrence[{0,1,0,0,1,0,0,0,-1,0,1,-1,-1,1,0,-1,0,0,0,1,0,0,1,0,-1},{1,0,1,0,1,1,1,2,1,2,2,3,3,3,4,4,5,5,6,6,7,8,9,9,10},70] (* _Harvey P. Dale_, Sep 19 2022 *)

%o (PARI) Vec(1/((1-x^2)*(1-x^5)*(1-x^7)*(1-x^11)) + O(x^80)) \\ _Jinyuan Wang_, Mar 15 2020

%K nonn,easy

%O 0,8

%A _N. J. A. Sloane_