login
A029167
Expansion of 1/((1-x^2)(1-x^3)(1-x^9)(1-x^12)).
0
1, 0, 1, 1, 1, 1, 2, 1, 2, 3, 2, 3, 5, 3, 5, 6, 5, 6, 9, 6, 9, 11, 9, 11, 15, 11, 15, 18, 15, 18, 23, 18, 23, 27, 23, 27, 34, 27, 34, 39, 34, 39, 47, 39, 47, 54, 47, 54, 64, 54, 64, 72, 64, 72, 84, 72, 84, 94, 84, 94, 108, 94
OFFSET
0,7
LINKS
Index entries for linear recurrences with constant coefficients, signature (0, 1, 1, 0, -1, 0, 0, 0, 1, 0, -1, 0, 0, 0, -1, 0, 1, 0, 0, 0, -1, 0, 1, 1, 0, -1).
FORMULA
a(0)=1, a(1)=0, a(2)=1, a(3)=1, a(4)=1, a(5)=1, a(6)=2, a(7)=1, a(8)=2, a(9)=3, a(10)=2, a(11)=3, a(12)=5, a(13)=3, a(14)=5, a(15)=6, a(16)=5, a(17)=6, a(18)=9, a(19)=6, a(20)=9, a(21)=11, a(22)=9, a(23)=11, a(24)=15, a(25)=11, a(n)=a(n-2)+a(n-3)-a(n-5)+a(n-9)-a(n-11)- a(n-15)+ a(n-17)-a(n-21)+a(n-23)+a(n-24)-a(n-26). - Harvey P. Dale, Feb 07 2015
MATHEMATICA
CoefficientList[Series[1/((1-x^2)(1-x^3)(1-x^9)(1-x^12)), {x, 0, 100}], x] (* or *) LinearRecurrence[{0, 1, 1, 0, -1, 0, 0, 0, 1, 0, -1, 0, 0, 0, -1, 0, 1, 0, 0, 0, -1, 0, 1, 1, 0, -1}, {1, 0, 1, 1, 1, 1, 2, 1, 2, 3, 2, 3, 5, 3, 5, 6, 5, 6, 9, 6, 9, 11, 9, 11, 15, 11}, 100] (* Harvey P. Dale, Feb 07 2015 *)
CROSSREFS
Sequence in context: A165477 A318687 A119994 * A161103 A337879 A147301
KEYWORD
nonn
AUTHOR
STATUS
approved