login
A029163
Expansion of 1/((1 - x^2)*(1 - x^3)*(1 - x^8)*(1 - x^11)).
1
1, 0, 1, 1, 1, 1, 2, 1, 3, 2, 3, 4, 4, 4, 6, 5, 7, 7, 8, 9, 10, 10, 13, 12, 15, 15, 17, 18, 20, 20, 24, 23, 27, 28, 30, 32, 35, 35, 40, 40, 44, 46, 49, 51, 56, 56, 62, 63, 68, 70, 75, 77, 83, 84, 91, 93, 99, 102, 108, 111, 118, 120, 128, 131, 138, 142, 150
OFFSET
0,7
COMMENTS
a(n) is the number of partitions of n into parts 2, 3, 8, and 11. - Joerg Arndt, Apr 13 2019
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,1,1,0,-1,0,0,1,0,-1,0,0,0,-1,0,1,0,0,-1,0,1,1,0,-1).
MATHEMATICA
CoefficientList[Series[1 / ((1 - x^2) (1 - x^3) (1 - x^8) (1 - x^11)), {x, 0, 70}], x] (* Vincenzo Librandi, Apr 13 2019 *)
PROG
(Magma) m:=80; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1 - x^2)*(1 - x^3)*(1 - x^8)*(1 - x^11)))); // Vincenzo Librandi, Apr 13 2019
(PARI) Vec(1/((1-x^2)*(1-x^3)*(1-x^8)*(1-x^11)) + O(x^70)) \\ Felix Fröhlich, Apr 13 2019
CROSSREFS
Sequence in context: A143929 A153583 A346797 * A196191 A137661 A289152
KEYWORD
nonn,easy
AUTHOR
STATUS
approved