login
A029133
Expansion of 1/((1-x)(1-x^9)(1-x^10)(1-x^12)).
1
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 4, 4, 4, 4, 4, 4, 5, 6, 7, 8, 9, 9, 10, 10, 10, 11, 12, 13, 15, 16, 17, 18, 19, 19, 21, 22, 23, 25, 27, 28, 30, 31, 32, 34, 36, 37, 40, 42, 44, 46, 48, 49, 52, 54, 56, 59, 62, 64, 68, 70
OFFSET
0,10
COMMENTS
Number of partitions of n into parts 1, 9, 10, and 12. [Joerg Arndt, Mar 10 2014]
LINKS
Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 1, -1, 0, 0, 0, 0, 0, -1, 1, -1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, -1).
FORMULA
a(0)=1, a(1)=1, a(2)=1, a(3)=1, a(4)=1, a(5)=1, a(6)=1, a(7)=1, a(8)=1, a(9)=2, a(10)=3, a(11)=3, a(12)=4, a(13)=4, a(14)=4, a(15)=4, a(16)=4, a(17)=4, a(18)=5, a(19)=6, a(20)=7, a(21)=8, a(22)=9, a(23)=9, a(24)=10, a(25)=10, a(26)=10, a(27)=11, a(28)=12, a(29)=13, a(30)=15, a(31)=16, a(n)=a(n-1)+a(n-9)-a(n-11)+a(n-12)-a(n-13)- a(n-19)+ a(n-20)- a(n-21)+ a(n-23)+ a(n-31)-a(n-32). - Harvey P. Dale, Mar 08 2014
MATHEMATICA
CoefficientList[Series[1/((1 - x) (1 - x^9) (1 - x^10) (1 - x^12)), {x, 0, 70}], x] (* Harvey P. Dale, Mar 08 2014 *)
LinearRecurrence[{1, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 1, -1, 0, 0, 0, 0, 0, -1, 1, -1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, -1}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 4, 4, 4, 4, 4, 4, 5, 6, 7, 8, 9, 9, 10, 10, 10, 11, 12, 13, 15, 16}, 70] (* Harvey P. Dale, Mar 08 2014 *)
CROSSREFS
Sequence in context: A213253 A132983 A348182 * A255402 A230411 A358551
KEYWORD
nonn
AUTHOR
STATUS
approved