login
A029095
Expansion of 1/((1-x)*(1-x^5)*(1-x^7)*(1-x^12)).
1
1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 4, 4, 6, 6, 7, 8, 8, 10, 10, 12, 13, 14, 16, 16, 19, 20, 22, 24, 25, 28, 29, 32, 34, 36, 39, 41, 45, 47, 50, 53, 56, 60, 63, 67, 70, 74, 78, 82, 87, 91, 96, 100, 105, 110, 115, 121, 126, 132
OFFSET
0,6
COMMENTS
Number of partitions of n into parts 1, 5, 7 and 12. - Ilya Gutkovskiy, May 21 2017
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,1,-1,1,-1,0,0,0,0,0,0,0,0,-1,1,-1,1,0,0,0,1,-1).
FORMULA
G.f.: 1/((1-x)*(1-x^5)*(1-x^7)*(1-x^12)).
MATHEMATICA
CoefficientList[Series[1/((1 - x) (1 - x^5) (1 - x^7) (1 - x^12)), {x, 0, 80}], x] (* Vincenzo Librandi, May 24 2017 *)
CROSSREFS
Cf. A025886 (first differences). [R. J. Mathar, Oct 23 2008]
Sequence in context: A145707 A145703 A334231 * A212295 A194315 A288577
KEYWORD
nonn,easy
AUTHOR
STATUS
approved